• Anúncio Global
    Respostas
    Exibições
    Última mensagem

geoemtria espacial

geoemtria espacial

Mensagempor silvia fillet » Sex Fev 17, 2012 14:12

Um cone de geratriz medindo tres raiz quadrada de 5 cm está inscrito em um cilindro cuja área da seção meridiana é igual a 20 raiz quadrada de 5 cm2. Determine a medida do raio da base do cone.
silvia fillet
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 89
Registrado em: Qua Out 12, 2011 21:07
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: geoemtria espacial

Mensagempor MarceloFantini » Sex Fev 17, 2012 14:18

Quais foram suas tentativas?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: geoemtria espacial

Mensagempor MickaelSantos » Ter Fev 21, 2012 21:00

Ajude me nesse também, Marcelo...

Para a secção meridiana do cilindro, pensei assim:
2r.h=20\sqrt{5} \Leftrightarrow h=\frac{10.\sqrt{5}}{r}

E para o cone, pensei assim (por Pitágoras):
(3.\sqrt{5})^2=h^2+r^2 \Leftrightarrow 45=h^2+r^2

Substituindo a altura calculada anteriormente, temos:
45=(\frac{10.\sqrt{5}}{r})^2+r^2 \Leftrightarrow 45=\frac{500}{r^2}+r^2 \Rightarrow r^4-45r^2+500=0

Resolvendo tenho que:
r=5 ou r=2\sqrt{5}

E que:
h=2\sqrt{5} ou h=5

Ou seja:
Se r=5 \Rightarrow h=2\sqrt{5}

E:
Se r=2\sqrt{5} \Rightarrow h=5

Nesse caso as duas estão corretas, ou apenas uma delas. Se for só uma, qual???

Obrigado...
Professor de Matemática
Avatar do usuário
MickaelSantos
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Fev 21, 2012 19:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: geoemtria espacial

Mensagempor MarceloFantini » Ter Fev 21, 2012 21:34

Acredito que ambas estejam certas.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.