• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria Espacial - Cones - UFMG 2001

Geometria Espacial - Cones - UFMG 2001

Mensagempor felip3mg » Ter Dez 06, 2011 12:16

Pessoal, boa tarde.
Estou estudando para a segunda etapa do vestibular da ufmg, e travei numa questão de matemática da prova de 2001.
Segue a questão (creio que a figura é desnecessária para minha dúvida):

Nessas figuras, estão representados os recipientes I e II.
O recipiente I está completamente cheio de água e tem a forma de um cone circular reto, com altura H e raio da base R1.
O recipiente II está vazio e também tem a forma de um cone circular reto, com a mesma altura H , mas com raio da base igual a R2.
A água contida em I é, então, vertida em II, até que o nível da água, em ambos os recipientes, tenha a mesma altura h.
Considerando essas informações, ESCREVA essa altura h em função de H, R1 e R2.

A apostila da Editora Bernoulli traz a seguinte resposta h= H\sqrt[3]{\frac{{R1}^{2}}{{R1}^{2}+{R2}^{2}}}

Tentei realizar a questão por meio de semelhança entre os volumes de cada cone, assim como também igualar com a semelhança do outro cone pois os dois ao meu ver tem a mesma constante cúbica.
Como seria o melhor modo de resolver essa questão?
felip3mg
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Dez 06, 2011 12:00
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Geometria Espacial - Cones - UFMG 2001

Mensagempor joao_pimentel » Qua Dez 14, 2011 21:06

Caríssimo, não é difícil

Lembre-se que o volume do cone é V=\frac{A_b*H}{3} em que A_b é a área da base e h é a altura

A área da base, porque é um círculo é A_b=\pi.r^2

Assim, a função Volume total é V=\frac{\pi.r^2.H}{3}

V_1=\frac{\pi.{R_1}^2.H}{3}

V_2=\frac{\pi.{R_2}^2.H}{3}

Lembre-se que se o cone não está cheio tem de tirar a parte superior que falta, ou seja o cone que está acima de h

Assim a função do volume em função de h é V_2(h)=\frac{\pi.{R_2}^2.H}{3}-\frac{\pi.{R_2}^2.(H-h)}{3}

Lembre-se que o que saíu do rec. 1 é igual ao que entrou no rec. 2

Assim é só resolver esta equação em função de h

\frac{\pi.{R_2}^2.H}{3}-\frac{\pi.{R_2}^2.(H-h)}{3}=\frac{\pi.{R_1}^2.(H-h)}{3}

Acho que é isto :)

Acho que o raciocínio está correcto...

Fica bem :)
joao_pimentel
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qua Dez 14, 2011 20:11
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.