por renataf » Seg Nov 29, 2010 10:06
uma caixa na forma de um paralelepípedo de base quadrada contém uma pirâmide, cujos vértices da base são os pontos médios das arestas do fundo da caixa. O vértice superior da pirâmide toca a tampa da caixa. A razão entre os volumes da pirâmide e da caixa é igual a:
A)1/3
B)1/4
C)1/6
D)1/8
E)1/12
A resposta correta é a C, mas eu tentei fazer e só consigo chegar na letra E.
Minha resolução fica assim;
O volume da pirâmide:

(já q a base da pirâmide está inserida numa caixa de base quadrada, logo a base da pirâmide é um quadrado)

x

(eu coloquei lado da caixa sobre 2 pq ele diz q os vértices da base são os pontos médios das arestas do fundo da caixa e H=lado da caixa pq a piramide esta inserida na caixa e a ponta dela bate na tampa da caixa)
Resolvendo fica:
O volume da caixa é :

a razao:

Aí vai ficar:
Não sei no que estou errando. Gostaria q alguém me ajudasse.
-
renataf
- Usuário Ativo

-
- Mensagens: 24
- Registrado em: Sáb Nov 20, 2010 17:17
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por fttofolo » Seg Nov 29, 2010 10:36
Temos que o volume do paralelepípedo é:
V=a^2.h (área da base x altura), como a base é um quadrado de lado a.
A base da pirâmide tem seus vértices nos pontos médios do quadrado do paralelepípedo, logo
a base da pirâmide vai ser um quadrado inscrito no quadrado do paralelepípedo (ver figura em anexo)
Então usamos a fórmula da diagonal para descobrirmos o valor do lado da base da pirâmide:
![d=l\sqrt[2]{2} d=l\sqrt[2]{2}](/latexrender/pictures/36913f394e0e1917e6c2b3db67122e35.png)
![a=l\sqrt[2]{2} a=l\sqrt[2]{2}](/latexrender/pictures/7591af6f527596fd2499f72ba054e0fb.png)
![l=\frac{a\sqrt[2]{2}}{a} l=\frac{a\sqrt[2]{2}}{a}](/latexrender/pictures/21854a97f9c8d2cadfc20285485e0eb5.png)
Temos que oo volume do paralelepípedo é

Temos que o volume da pirâmide é
![{V}_{piram}=\frac{1}{3}{\left(\frac{a\sqrt[2]{2}}{2} \right)}^{2} {V}_{piram}=\frac{1}{3}{\left(\frac{a\sqrt[2]{2}}{2} \right)}^{2}](/latexrender/pictures/096ca223c0fcfb2c064ee7db605ed269.png)


Razão entre volumes:

Logo a razão vai ser

- Anexos
-
[O anexo não pode ser exibido, pois a extensão pdf foi desativada pelo administrador.]
-
fttofolo
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Sex Nov 19, 2010 10:15
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por renataf » Seg Nov 29, 2010 10:52
Obrigada pela ajuda! Foi falta de atenção minha.
-
renataf
- Usuário Ativo

-
- Mensagens: 24
- Registrado em: Sáb Nov 20, 2010 17:17
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por fttofolo » Seg Nov 29, 2010 11:09
Percebo que a maioria das pessoas (inclusive eu), não prestamos atenção a detalhes e as vezes cometemos erros, tenho procurado me policiar mais, pois leio com muita pressa e muitas vezes acabo errando.
-
fttofolo
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Sex Nov 19, 2010 10:15
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
Voltar para Geometria Espacial
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Geometria Espacial - Pirâmide] Pirâmide de Cartolina
por raimundoocjr » Qui Ago 02, 2012 22:13
- 1 Respostas
- 2699 Exibições
- Última mensagem por MarceloFantini

Qui Ago 02, 2012 23:04
Geometria Espacial
-
- piramide
por Gir » Ter Set 22, 2009 12:01
- 2 Respostas
- 2849 Exibições
- Última mensagem por Gir

Qua Set 23, 2009 11:02
Geometria Espacial
-
- Pirâmide
por Ani » Dom Dez 05, 2010 15:12
- 4 Respostas
- 3537 Exibições
- Última mensagem por Elcioschin

Sex Dez 10, 2010 21:42
Geometria Espacial
-
- Pirâmide
por Cleison » Seg Mai 16, 2011 17:11
- 1 Respostas
- 1566 Exibições
- Última mensagem por LuizAquino

Ter Jun 21, 2011 23:21
Geometria Espacial
-
- piramide!
por willwgo » Sex Jul 08, 2011 18:19
- 0 Respostas
- 2857 Exibições
- Última mensagem por willwgo

Sex Jul 08, 2011 18:19
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.