• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação geral do plano usando duas retas

Equação geral do plano usando duas retas

Mensagempor iarapassos » Sáb Set 01, 2012 19:12

Olá pessoal.

O exercício do qual tenho dúvida é:

Determine, se possível, uma equação geral do plano determinado pelas retas r e s, nos seguintes casos:

c)r: X=(1,2,3) + h(1,0,2);h\in\Re 


s: X=(0,3,1) + t(2,0,4);t\in\Re

Eu fiz as questões a e b e nelas foi possível achar o vetor normal do plano formado pelas retas, pois eles eram LI e portanto paralelos. O produto vetorial dos vetores diretores das retas resulta na normal do plano.
Mas na letra c, os vetores são LD, ou seja, eles são paralelos. Nesse caso, como achar a equação geral do plano?
iarapassos
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Ago 29, 2012 12:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando

Re: Equação geral do plano usando duas retas

Mensagempor LuizAquino » Sáb Set 01, 2012 22:54

iarapassos escreveu:O exercício do qual tenho dúvida é:

Determine, se possível, uma equação geral do plano determinado pelas retas r e s, nos seguintes casos:

c)r: X=(1,2,3) + h(1,0,2);h\in\Re 

s: X=(0,3,1) + t(2,0,4);t\in\Re

Eu fiz as questões a e b e nelas foi possível achar o vetor normal do plano formado pelas retas, pois eles eram LI e portanto paralelos. O produto vetorial dos vetores diretores das retas resulta na normal do plano.


Observação: o correto seria dizer "achar o vetor normal do plano formado pelos vetores diretores das retas, pois eles eram LI e portanto não paralelos".

iarapassos escreveu:Mas na letra c, os vetores são LD, ou seja, eles são paralelos. Nesse caso, como achar a equação geral do plano?


Simples: como essas retas são paralelas e não coincidentes (verifique), basta escolher um ponto P na reta r e um ponto Q na reta s. Um vetor normal ao plano será dado por \overrightarrow{PQ}\times(1,\,0,\,2) (ou ainda, por \overrightarrow{PQ}\times(2,\,0,\,4)).
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Equação geral do plano usando duas retas

Mensagempor iarapassos » Dom Set 02, 2012 22:15

Verdade, acho que escrevei com pressa e acabei escrevendo errado. Se são LI, não são paralelos. E tbm mandei em falar "formado pelas retas" e não por seus vetores diretores. Valeu pela dica!
iarapassos
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qua Ago 29, 2012 12:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}