por hygorvv » Qua Jul 25, 2012 13:12
Olá galera, bom dia.
Obtenha equações do lugar geométrico dos pontos médios dos segmentos que se apoiam nas retas r e s e interprete geometricamente, no caso em que:
r: X=(1,2,2)+

(0,1,1) e s: X=(0,0,0)+

(1,0,1).
Resposta: 2x+2y-2z-1=0
Galera, interpretar geometricamente eu até consigo, não consigo é obter os pontos médios para tentar tirar alguma conclusão.
Agradeço desde já.
-
hygorvv
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Ter Jun 05, 2012 00:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por LuizAquino » Qua Jul 25, 2012 21:26
hygorvv escreveu:Obtenha equações do lugar geométrico dos pontos médios dos segmentos que se apoiam nas retas r e s e interprete geometricamente, no caso em que:
r: X=(1,2,2)+

(0,1,1) e s: X=(0,0,0)+

(1,0,1).
Resposta: 2x+2y-2z-1=0
Galera, interpretar geometricamente eu até consigo, não consigo é obter os pontos médios para tentar tirar alguma conclusão.
Cada segmento "se apoia" nas retas r e s. Em outras palavras, cada segmento tem um dos extremo na reta r e o outro na reta s.
Sejam P e Q os extremos de um segmento qualquer, de tal modo que P está em r e Q está em s.
Como P está em r, existe um escalar a tal que P = (1, 2, 2) + a(0, 1, 1). Por outro lado, como Q está em s, existe um escalar b tal que Q = (0, 0, 0) + b(1, 0, 1).
Desse modo, o ponto médio entre P e Q será dado por:

Agora tente continuar a partir daí.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por hygorvv » Qui Jul 26, 2012 13:47
MUITO obrigado LuizAquino.
Na verdade, você respondeu a questão né, deu a equação vetorial do plano, o que fiz foi encontrar a geral.
Obrigado.
-
hygorvv
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Ter Jun 05, 2012 00:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Lugar geometrico
por heldersmd » Sáb Set 15, 2012 12:35
- 1 Respostas
- 2283 Exibições
- Última mensagem por young_jedi

Sáb Set 15, 2012 13:46
Geometria Analítica
-
- LUGAR GEOMÉTRICO
por VALDERLEY » Sáb Mai 26, 2018 21:30
- 0 Respostas
- 3542 Exibições
- Última mensagem por VALDERLEY

Sáb Mai 26, 2018 21:30
Geometria Analítica
-
- LUGAR GEOMÉTRICO
por VALDERLEY » Sáb Mai 26, 2018 21:37
- 0 Respostas
- 2853 Exibições
- Última mensagem por VALDERLEY

Sáb Mai 26, 2018 21:37
Geometria Analítica
-
- Lugar Geométrico
por Danilo » Ter Jan 08, 2013 13:33
- 1 Respostas
- 1837 Exibições
- Última mensagem por young_jedi

Ter Jan 08, 2013 14:25
Geometria Analítica
-
- Lugar Geométrico
por nayarabarbosa » Ter Set 17, 2013 11:00
- 0 Respostas
- 1279 Exibições
- Última mensagem por nayarabarbosa

Ter Set 17, 2013 11:00
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.