
CarolMarques escreveu:Decomponha u =(1,0,3) como soma dos vetores v e w tais que v, (1,1,1) e (-1,1,2) sejam LD e w seja ortogonal aos dois últimos.
CarolMarques escreveu:Não sei como fazer essa questão por favor me ajudem.
seja L.D., basta que existam escalares a e b tais que:
deve ser ortogonal a (1, 1, 1) e (-1, 1, 2), uma possibilidade é tomar
. Calculando esse produto vetorial, obtemos que
.
.
. Em outras palavras, basta resolver a equação:

Voltar para Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
(dica : igualar a expressão a
e elevar ao quadrado os dois lados)