• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Bases e subespaços] qual a diferença ?

[Bases e subespaços] qual a diferença ?

Mensagempor GuilhermeOliveira » Seg Jun 25, 2012 13:34

Boa tarde,
qual é a diferênça entre uma base, espaço e subespaço ?
Procurei sobre esse assunto na internet e não encontrei nada que fosse satisfatório.

Muito obrigado.
GuilhermeOliveira
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Jun 24, 2012 22:28
Formação Escolar: GRADUAÇÃO
Área/Curso: ciência da computação
Andamento: cursando

Re: [Bases e subespaços] qual a diferença ?

Mensagempor LuizAquino » Seg Jun 25, 2012 16:54

GuilhermeOliveira escreveu:qual é a diferênça entre uma base, espaço e subespaço ?
Procurei sobre esse assunto na internet e não encontrei nada que fosse satisfatório.


O que você chama de "satisfatório"?

Você conhece a definição de cada um desses conceitos? Quais foram as suas dúvidas em relação a elas?
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Bases e subespaços] qual a diferença ?

Mensagempor GuilhermeOliveira » Seg Jun 25, 2012 17:23

Encontrei um livro de um prof. da minha universidade que explica isso bem. Se chama "um curso de gaal", autor reginaldo j. santos.
Já resolvi o problema,
obrigado.
GuilhermeOliveira
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Dom Jun 24, 2012 22:28
Formação Escolar: GRADUAÇÃO
Área/Curso: ciência da computação
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}