• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Trigonometria] 11º Planos

[Trigonometria] 11º Planos

Mensagempor rola09 » Dom Mar 18, 2012 19:58

Boa Noite,
Na seguinte questão, respondi a letra C visto os vetores não serem colineares mas fiquei com dúvidas se está correto.

1 - Os planos \alpha:x-y+z+\frac{1}{2}=0 e \beta:2x+2y+2z=-1 são:

(A) coicidentes
(B) perpendiculares
(c) secantes não perpendiculares
(d) estritamente paralelos
rola09
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Seg Mar 12, 2012 15:56
Formação Escolar: ENSINO MÉDIO
Área/Curso: Cientifico-Natural
Andamento: cursando

Re: [Trigonometria] 11º Planos

Mensagempor MarceloFantini » Seg Mar 19, 2012 00:10

Nota-se que eles não são coincidentes pois uma equação não é múltipla da outra. Portanto, eliminamos a letra A. Como os vetores normais são diferentes, também eliminamos a D. Fazendo o produto escalar dos normais verá que não são ortogonais, logo letra C.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.