por ah001334 » Dom Nov 27, 2011 16:44
Oi estou com uma dúvida,
para passar coordenadas retangulares para cilíndricas utilizo as fórmulas
![r=\sqrt[]{{x}^{2}+{y}^{2}} r=\sqrt[]{{x}^{2}+{y}^{2}}](/latexrender/pictures/e48a93b646e01f2978a8863bd9a35b85.png)
e

depois de resolver essas equações como devo fazer para descubrir em que grau a equação ficou?
-
ah001334
- Usuário Dedicado

-
- Mensagens: 29
- Registrado em: Seg Out 17, 2011 12:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Coordenadas cilíndricas
por Marcos_Mecatronica » Seg Jul 08, 2013 01:38
- 1 Respostas
- 1289 Exibições
- Última mensagem por young_jedi

Seg Jul 08, 2013 22:17
Geometria Analítica
-
- [Coordenadas Cilíndricas] Integral Tripla
por raimundoocjr » Sáb Dez 14, 2013 11:07
- 1 Respostas
- 3397 Exibições
- Última mensagem por Russman

Dom Dez 15, 2013 02:55
Cálculo: Limites, Derivadas e Integrais
-
- Esboço da região de integração - coordenadas cilíndricas
por BrunoCPL » Dom Set 09, 2018 17:48
- 1 Respostas
- 6067 Exibições
- Última mensagem por Gebe

Seg Set 10, 2018 11:00
Cálculo: Limites, Derivadas e Integrais
-
- Integral tripla em coordenadas cilíndricas e esféricas
por karllatorelli » Ter Jul 15, 2014 15:19
- 0 Respostas
- 1128 Exibições
- Última mensagem por karllatorelli

Ter Jul 15, 2014 15:19
Cálculo: Limites, Derivadas e Integrais
-
- passar para coordenadas cartesianas
por ricardosanto » Sáb Nov 03, 2012 11:07
- 1 Respostas
- 950 Exibições
- Última mensagem por MarceloFantini

Sáb Nov 03, 2012 13:05
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.