• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão sobre cônicas

Questão sobre cônicas

Mensagempor Cristiano Tavares » Dom Set 04, 2011 12:41

Olá a todos,

Não estou conseguindo resolver uma questão sobre cônicas. Nessa questão são dados cinco pontos que pertencem à cônica: P(1,1), Q(2,1), R(3,-1), S(-3,2) e T(-2,-1). Pergunta-se então qual é a equação da cônica.

Sei que a forma geral da equação de uma cônica (parábola, elipse, hipérbole) é Ax² + Bxy + Cy² + Dx + Ey + F = 0. Sei também que os pontos dados acima devem ser substituídos nessa equação geral, encontrando-se então um sistema de cinco equações com as incógnitas A, B, C, D, E, e F. O problema é que não estou conseguindo resolver esse sistema, não estou entendendo o fato de serem seis variáveis e apenas cinco equações.

Alguém poderia me ajudar a resolver esse sistema de equações?
Cristiano Tavares
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Mai 11, 2011 21:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: formado

Re: Questão sobre cônicas

Mensagempor LuizAquino » Dom Set 04, 2011 20:11

Como você mesmo escreveu, a equação geral da cônica é:

Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0

Entretanto, tem um detalhe: por definição temos que A, B ou C deve ser diferente de zero.

Suponha que A é diferente de zero. Veja que você pode fazer:

x^2 + \frac{B}{A}xy + \frac{C}{A}y^2 + \frac{D}{A}x + \frac{E}{A}y + \frac{F}{A} = 0

Agora façamos c_1 = \frac{B}{A}, c_2 = \frac{C}{A}, c_3 = \frac{D}{A}, c_4 = \frac{E}{A} e c_5 = \frac{F}{A} . A equação pode então ser escrita como:

x^2 + c_1xy + c_2y^2 + c_3x + c_4y + c_5 = 0

Veja que dados os cinco pontos, você pode determinar as cinco constantes acima.

Por outro lado, veja que se A fosse zero, então B ou C não seria. Bastava então dividir toda a equação pela constante que não fosse nula. Novamente você poderia criar cinco novas constantes.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)