• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Produto Vetorial

Produto Vetorial

Mensagempor ARCS » Sex Mai 20, 2011 08:59

Estou com dificuldades neste caso. Já fiz diversos exercícios parecidos com este, mas este envolve somas vetoriais. Grato pela ajuda!

Sabendo que |{u}^{\rightarrow}|=6, |{v}^{\rightarrow}|=4 e 30º o ângulo formado entre u e v.

Calcular a área do paralelogramo determinado por u+v e u-v.
ARCS
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 40
Registrado em: Qui Out 28, 2010 18:55
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Produto Vetorial

Mensagempor LuizAquino » Sex Mai 20, 2011 10:25

Dicas

Dados dois vetores \vec{a} e \vec{b}, temos que são válidas as afirmações abaixo.

(i) A área A do paralelogramo determinado por esses vetores, sendo \theta o ângulo formado entre eles, é dada por A = ||\vec{a}||\,||\vec{b}||\,\textrm{sen}\,\theta .

(ii) ||\vec{a} \pm {b}||^2 = ||\vec{a}||^2 \pm 2\left(\vec{a}\cdot\vec{b}\right) + ||\vec{b}||^2

(iii) \cos \theta = \frac{\vec{a}\cdot\vec{b}}{||\vec{a}||||\vec{b}||}, sendo \theta o ângulo formado por esses vetores (não nulos).

(iv) \left(\vec{a} + \vec{b}\right)\cdot \left(\vec{a} - \vec{b}\right) = ||\vec{a}||^2 - ||\vec{b}||^2
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59