por felipe_ad » Sex Ago 27, 2010 19:56
Olá,
Eu até entendi as condições de subespaço vetorial, mas tem exercicios que não consigo resolver. Por isso venho aqui pedir ajuda a quem sabe.
Sao os seguintes:
Verificar se W é subespaço:
(a)V = R4 e W = {( x , y , z , t ) / z = x + 2y e t = x ? 3y}
(b)V = Rn e W = {v ?V / Av = O, A uma matriz m × n e O a matriz nula m × 1}
(c)V = M2× 2 e W = { A / AT = TA, T uma matriz fixada em V }
(d)V = P2 ( x ) e W = { p ( x ) / p ( x ) + p? ( x ) = 0}
(e)V = P2 ( x ) e W = { p ( x ) / grau [ p ( x ) + x2 ] ? 1} ? {o ( x )}, o ( x ) o polinômio nulo.
Agradeço desde já.
-
felipe_ad
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Sáb Abr 03, 2010 12:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por MarceloFantini » Sáb Ago 28, 2010 19:31
a)

{

}.
1) O zero pertence pois tomando x e y iguais a zero fica (0,0,0,0).
2) Sejam

e

.

3)

Nos outros basta fazer similar. Você pega a propriedade do subespaço e verifica as condições:
1) Zero tem que estar no subespaço;
2) Dados dois vetores, a soma tem que permanecer no subespaço;
3) Dado uma constante e um vetor, o produto tem que permanecer no subespaço.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Subespaços vetoriais
por ewald » Seg Mar 26, 2012 03:50
- 6 Respostas
- 4085 Exibições
- Última mensagem por LuizAquino

Qui Mar 29, 2012 13:26
Álgebra Linear
-
- Subespaços vetoriais
por lia300flu » Seg Jul 07, 2014 18:09
- 1 Respostas
- 1669 Exibições
- Última mensagem por e8group

Seg Jul 07, 2014 22:35
Álgebra Linear
-
- Subespaços Vetoriais
por Razoli » Sex Set 26, 2014 21:58
- 1 Respostas
- 1429 Exibições
- Última mensagem por e8group

Sáb Set 27, 2014 22:26
Álgebra Linear
-
- Prova - Subespaços vetoriais
por viniciusdosreis » Qua Fev 02, 2011 16:16
- 8 Respostas
- 5396 Exibições
- Última mensagem por LuizAquino

Sáb Fev 05, 2011 19:22
Álgebra Linear
-
- [Subespaços vetoriais] Interseção
por Tathiclau » Dom Dez 15, 2013 22:30
- 1 Respostas
- 1298 Exibições
- Última mensagem por e8group

Ter Dez 17, 2013 00:16
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.