• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como resolver um cálculo de Geometria Analítica (simetria)

Como resolver um cálculo de Geometria Analítica (simetria)

Mensagempor AnaFurtado » Sáb Mar 20, 2010 17:24

Dados os pontos A(6) e B(-2), determine:

a) os simétricos dos pontos A e B em relação à origem
- Esse eu acredito que entendi, a simetria do número é o seu inverso né? O inverso de A fica -6 e de B fica 2.

b) a abscissa do ponto A', simétrico de A em relação a B
Fiquei em duvida, eu tentei resolver de 2 formas:
- d(A',B) = x(b) - x(a') = -2 - (-6) = 4
ou
- (A',B) = -6 -2 = 8

c) a abscissa do ponto B', simétrico de B em relação a A
Neste, a mesma história da B:
- d(B',A) = X(a) - X(b) = 6-2 = 4
ou
- (B',A) = 2 - 6 = -4
AnaFurtado
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Mar 20, 2010 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Como resolver um cálculo de Geometria Analítica (simetria)

Mensagempor Molina » Seg Mar 22, 2010 23:36

Boa noite, Ana.

AnaFurtado escreveu:a) os simétricos dos pontos A e B em relação à origem
- Esse eu acredito que entendi, a simetria do número é o seu inverso né? O inverso de A fica -6 e de B fica 2.


:y:

AnaFurtado escreveu:b) a abscissa do ponto A', simétrico de A em relação a B


d(A',B) = \frac{x(b) + x(a')}{2}=\frac{-2+(-6)}{2}=-4

AnaFurtado escreveu:c) a abscissa do ponto B', simétrico de B em relação a A


d(B',A) = \frac{x(b') + x(a)}{2}=\frac{2+6}{2}=4

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Como resolver um cálculo de Geometria Analítica (simetri

Mensagempor alinter » Qua Mar 16, 2011 11:45

Segundo o Livro Matemática Compelta - Giovanni e Bonjorno
Respostas:
a) A(-6); B(2)

b) A'(-10)

c) B'(14)

Resolução:
Simétrico em geometria geralmente quer dizer "A mesma distância, na mesma direção mas em sentido oposto."

A) "- Esse eu acredito que entendi, a simetria do número é o seu inverso né? O inverso de A fica -6 e de B fica 2."
:y:

B) A distância de A até B = |- 2 - 6|=> |- 8|=> 8 . Sendo 8 a distância entre os dois pontos(A,B), a distância de 8 apartir de B no sentido negativo(onde o sentido positivo já é 6(A)) será (- 2 - 8)= -10
A' = -10

C) A distância de 8 no sentido positivo(onde o sentido negativo já é -2(B)) a partir de A temos: (6 + 8) = 14
B' = 14
alinter
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Mar 16, 2011 11:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Como resolver um cálculo de Geometria Analítica (simetri

Mensagempor LuizAquino » Qua Mar 16, 2011 12:02

AnaFurtado escreveu:Dados os pontos A(6) e B(-2), determine:

a) os simétricos dos pontos A e B em relação à origem
- Esse eu acredito que entendi, a simetria do número é o seu inverso né? O inverso de A fica -6 e de B fica 2.


Usualmente, o "simétrico" de um número real a é o número -a de tal modo que a+(-a)=0.

Por outro lado, o "inverso" de um número real a é o número \frac{1}{a} de tal modo que a\cdot \frac{1}{a} = 1. Note que o 0 não possui inverso.

Exemplo: Dado o número 2, nós temos que:
  • Simétrico: -2
  • Inverso: \frac{1}{2}
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.