por Ronaldobb » Dom Mai 11, 2014 14:40
Por favor, gostaria de ajuda com este exercícios:
1) Descreva o conjunto dos vetores w que são ortogonais a v=(2,1,2) e que u=(1,1,-1) seja combinação linear de v e w.
Eu tentei resolver desse jeito:
Sejam S={v1,v2,v3} Então S={(a,b,c),(2,1,2),(1,1,-1)}
Logo:
v1.v3=(a,b,c).(1,1,-1)=a+b-c=0
v1.v2=(a,b,c).(2,1,2)=2a+b+2c=0
v1.v3=(2,1,2).(1,1,-1)=2+1-2=0
a+b-c=0
2a+b+2c=0
2+1-2=0
Só consegui ir até aí ...
-
Ronaldobb
- Usuário Parceiro

-
- Mensagens: 59
- Registrado em: Ter Set 18, 2012 19:35
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: cursando
por Russman » Dom Mai 11, 2014 16:22
Eu acho q você entendeu errado. Eu entendi que os vetores w têm de ser perpendiculares somente a v. E, ainda, têm de ser tais que seja possível escrever o u como CL destes com v.
De
Ronaldobb escreveu:vetores w que são ortogonais a v=(2,1,2)
obtemos

.
De
Ronaldobb escreveu:e que u=(1,1,-1) seja combinação linear de v e w.
obtemos que devem existir números

tais que

.
Multiplicando a última relação escalarmente por

somos capazes de calcular

.Note que

Ou seja,

.
Agora, substituindo esse resultado, vem que

para qualquer que seja

. Daí, podemos tomar

tal que

e descrever o conjunto como

Editado pela última vez por
Russman em Dom Mai 11, 2014 22:20, em um total de 2 vezes.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Ronaldobb » Dom Mai 11, 2014 21:06
Bom, ... não entendi nada na sua resposta.
A resposta do livro é esta: "É o conjunto dos vetores ?(7,8,-11), com ?


-
Ronaldobb
- Usuário Parceiro

-
- Mensagens: 59
- Registrado em: Ter Set 18, 2012 19:35
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: cursando
por Ronaldobb » Dom Mai 11, 2014 21:07
Bom, ... não entendi nada na sua resposta.
A resposta do livro é esta: "É o conjunto dos vetores ?(7,8,-11), com ?

-
Ronaldobb
- Usuário Parceiro

-
- Mensagens: 59
- Registrado em: Ter Set 18, 2012 19:35
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: cursando
por Russman » Dom Mai 11, 2014 21:24
Ah, então parece estar certo.
Note que

.
Daí,

.
Já que

é múltiplo de

e

é múltiplo de

, então

é múltiplo de

.
O que você não entendeu? Está familiarizado com produto escalar?
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Ronaldobb » Dom Mai 11, 2014 22:18
Você aplicou a fórmula da normalização? E o vetor w? O que fez com ele?
-
Ronaldobb
- Usuário Parceiro

-
- Mensagens: 59
- Registrado em: Ter Set 18, 2012 19:35
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Administração
- Andamento: cursando
por Russman » Dom Mai 11, 2014 22:29
No primeiro resultado(onde calculei o a) eu simplesmente multipliquei o vetor u escrito como combinação linear(CL) de v e w escalarmente por v. Na primeira parcela teremos o produto escalar de v por ele mesmo. Isto é exatamente o quadrado de seu módulo. Na segunda parcela, já que v e w são perpendiculares, teremos zero, já que o produto escalar de v por w é nulo! Uma vez calculado o a ( note q ele depende apenas de quantidades conhecidas) podemos substituir este resultado na expressão que calcula u como CL de v e w. Assim, já que a única quantidade desconhecida é a de interesse, ou seja, w, podemos isolá-lo. O fato de ele vir multiplicado por um número real na expressão(que é de se esperar, já que a mesma é menção de uma CL) indica que não somente o vetor w que está sendo calculado, mas, sim, todo um conjunto tal que cada um de seus elementos é um vetor que é múltiplo de w.
Mais claro agora?
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Vetores] Mostrando que um vetor como combinação linear.
por billhc » Qui Mar 05, 2015 20:23
- 4 Respostas
- 3142 Exibições
- Última mensagem por adauto martins

Dom Mar 22, 2015 13:08
Geometria Analítica
-
- vetores são ortogonais.
por Ana Maria da Silva » Seg Abr 08, 2013 15:13
- 1 Respostas
- 2954 Exibições
- Última mensagem por e8group

Seg Abr 08, 2013 16:22
Geometria Analítica
-
- Produto Interno - Vetores Ortogonais
por iarapassos » Qui Mar 21, 2013 00:02
- 1 Respostas
- 1654 Exibições
- Última mensagem por Russman

Qui Mar 21, 2013 12:14
Álgebra Linear
-
- Geometria Analítica Vetores
por hamidrius » Qua Out 13, 2010 17:29
- 1 Respostas
- 2303 Exibições
- Última mensagem por MarceloFantini

Qui Out 14, 2010 20:02
Geometria Analítica
-
- geometria analitica - vetores
por vinicius cruz » Sex Jun 22, 2012 12:09
- 3 Respostas
- 2916 Exibições
- Última mensagem por Russman

Dom Jun 24, 2012 22:23
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.