• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria Analítica] Vetores ortogonais e combinação linear

[Geometria Analítica] Vetores ortogonais e combinação linear

Mensagempor Ronaldobb » Dom Mai 11, 2014 14:40

Por favor, gostaria de ajuda com este exercícios:

1) Descreva o conjunto dos vetores w que são ortogonais a v=(2,1,2) e que u=(1,1,-1) seja combinação linear de v e w.

Eu tentei resolver desse jeito:

Sejam S={v1,v2,v3} Então S={(a,b,c),(2,1,2),(1,1,-1)}

Logo:

v1.v3=(a,b,c).(1,1,-1)=a+b-c=0
v1.v2=(a,b,c).(2,1,2)=2a+b+2c=0
v1.v3=(2,1,2).(1,1,-1)=2+1-2=0

a+b-c=0
2a+b+2c=0
2+1-2=0

Só consegui ir até aí ...
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Geometria Analítica] Vetores ortogonais e combinação li

Mensagempor Russman » Dom Mai 11, 2014 16:22

Eu acho q você entendeu errado. Eu entendi que os vetores w têm de ser perpendiculares somente a v. E, ainda, têm de ser tais que seja possível escrever o u como CL destes com v.

De

Ronaldobb escreveu:vetores w que são ortogonais a v=(2,1,2)


obtemos \overrightarrow{w}\cdot \overrightarrow{v}=0.

De

Ronaldobb escreveu:e que u=(1,1,-1) seja combinação linear de v e w.


obtemos que devem existir números a,b \in \mathbb{R} tais que

\overrightarrow{u}=a \overrightarrow{v}+b\overrightarrow{w}.

Multiplicando a última relação escalarmente por \overrightarrow{v} somos capazes de calcular a.Note que

\overrightarrow{u} \cdot \overrightarrow{v}=a \overrightarrow{v}\cdot \overrightarrow{v}+b\overrightarrow{w}\cdot \overrightarrow{v}\Rightarrow \overrightarrow{u}\cdot \overrightarrow{v}=av^2+0=av^2

Ou seja, a= \frac{\overrightarrow{u}\cdot \overrightarrow{v}}{v^2}.

Agora, substituindo esse resultado, vem que

\overrightarrow{u}=\left ( \frac{\overrightarrow{v}\cdot \overrightarrow{v}}{v^2}  \right )\overrightarrow{v}+b \overrightarrow{w}\Rightarrow \overrightarrow{w}= \frac{\overrightarrow{u}}{b}- \frac{1}{b}\left ( \frac{\overrightarrow{v}\cdot \overrightarrow{v}}{v^2}  \right )\overrightarrow{v}

para qualquer que seja b \in \mathbb{R} . Daí, podemos tomar c \in \mathbb{R} tal que cb=1 e descrever o conjunto como

\left \{ \overrightarrow{w} \in \mathbb{R}^3 \ |\ \overrightarrow{w}=c \left (\overrightarrow{u}- \left ( \frac{\overrightarrow{v}\cdot \overrightarrow{v}}{v^2}  \right )\overrightarrow{v}  \right ),c \in \mathbb{R}\  \right \}
Editado pela última vez por Russman em Dom Mai 11, 2014 22:20, em um total de 2 vezes.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Geometria Analítica] Vetores ortogonais e combinação li

Mensagempor Ronaldobb » Dom Mai 11, 2014 21:06

Bom, ... não entendi nada na sua resposta.

A resposta do livro é esta: "É o conjunto dos vetores ?(7,8,-11), com ?\neq\neq0
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Geometria Analítica] Vetores ortogonais e combinação li

Mensagempor Ronaldobb » Dom Mai 11, 2014 21:07

Bom, ... não entendi nada na sua resposta.

A resposta do livro é esta: "É o conjunto dos vetores ?(7,8,-11), com ?\neq0
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Geometria Analítica] Vetores ortogonais e combinação li

Mensagempor Russman » Dom Mai 11, 2014 21:24

Ah, então parece estar certo.

Note que

\frac{\overrightarrow{u}\cdot \overrightarrow{v}}{v^2} = \frac{2+1-2}{9}=\frac{1}{9}.

Daí,

\overrightarrow{u}-\frac{\overrightarrow{u}\cdot \overrightarrow{v}}{v^2} \overrightarrow{v} = (1,1,-1)-\frac{1}{9}(2,1,2)=\left ( \frac{7}{9},\frac{8}{9},-\frac{11}{9} \right ).

Já que \overrightarrow{w} é múltiplo de \left ( \frac{7}{9},\frac{8}{9},-\frac{11}{9} \right ) e \left ( \frac{7}{9},\frac{8}{9},-\frac{11}{9} \right ) é múltiplo de \left ( 7,8,-11 \right ), então
\overrightarrow{w} é múltiplo de \left ( 7,8,-11 \right ).

O que você não entendeu? Está familiarizado com produto escalar?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Geometria Analítica] Vetores ortogonais e combinação li

Mensagempor Ronaldobb » Dom Mai 11, 2014 22:18

Você aplicou a fórmula da normalização? E o vetor w? O que fez com ele?
Ronaldobb
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Ter Set 18, 2012 19:35
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: [Geometria Analítica] Vetores ortogonais e combinação li

Mensagempor Russman » Dom Mai 11, 2014 22:29

No primeiro resultado(onde calculei o a) eu simplesmente multipliquei o vetor u escrito como combinação linear(CL) de v e w escalarmente por v. Na primeira parcela teremos o produto escalar de v por ele mesmo. Isto é exatamente o quadrado de seu módulo. Na segunda parcela, já que v e w são perpendiculares, teremos zero, já que o produto escalar de v por w é nulo! Uma vez calculado o a ( note q ele depende apenas de quantidades conhecidas) podemos substituir este resultado na expressão que calcula u como CL de v e w. Assim, já que a única quantidade desconhecida é a de interesse, ou seja, w, podemos isolá-lo. O fato de ele vir multiplicado por um número real na expressão(que é de se esperar, já que a mesma é menção de uma CL) indica que não somente o vetor w que está sendo calculado, mas, sim, todo um conjunto tal que cada um de seus elementos é um vetor que é múltiplo de w.

Mais claro agora?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.