• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cônicas] 2 exerícios de parábola

[Cônicas] 2 exerícios de parábola

Mensagempor renan_a » Sex Nov 16, 2012 10:00

Olá, estou com dúvida em dois exercícios de parábola, e para no enxer de tópicos, resolvi colocar os dois em um tópico.

1- Em que ponto a parábola de V(-2,0) e F (0,0) intercepta o eixo dos y

2- Encontrar sobre a parábola y²=4x um ponto tal que sua distância à diretriz seja igual a 3


Desde já , agradeço a quem me ajudar.
Abraço
renan_a
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Ter Set 25, 2012 08:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: [Cônicas] 2 exerícios de parábola

Mensagempor young_jedi » Sex Nov 16, 2012 12:45

esta parabola é do tipo

4p(x-h)=(y-k)^2

o vertice esta em (h,k)=(0,0) e o foco (h+p,k)

portanto

h=-2,k=0,p=2

8(x+2)=y^2

agora vamos ver onde ele cruza o eixo y (são os pontos onde x=0)

y^2=8(0+2)

y^2=16

y=-4 ou y=4

______________________________________________________________________
2)

pela equação nos temos que

o vertcie (h,k)=(0,0)

p=1

então o foco

f(1,0)

então a reta diretriz esta em x=-1

então um ponto em que a distancia é igual a 3 sera

3=x-(-1)

x=2

portanto

y^2=4.2

y^2=8

y=\pm2\sqrt2

portano um ponto seria

(2,2\sqrt2)
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Cônicas] 2 exerícios de parábola

Mensagempor renan_a » Sex Nov 16, 2012 13:20

Valeu pela resposta, meu velho! =)
o número eu entendi.

Só que no dois eu fiquei meio boiando no que diz respeito ao V ser ( 0,0)...

A primeira coisa que eu descobri foi que o FOCO(1,0) , até aí beleza, mas o Vértice não poderia ser qualquer valor menor que x=1 ??

-------------------------------------------
Na parte em que tu fez: x-(-1)=3 -> x=2 , tu fez a equação da diretriz igual a 3? (x+1=3)
renan_a
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Ter Set 25, 2012 08:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: [Cônicas] 2 exerícios de parábola

Mensagempor young_jedi » Sex Nov 16, 2012 14:40

no segundo chega -se a essa conclusão analisando a função

4p(x-h)=(y-k)^2

como a equação é

4x=y^2

então chegamos a conculsão que p=1, k=0 e h=0

na parte da equação da diretriz
eu falei que a reta diretriz é x=-1
a distancia do vertice ao foco é igual a distancia da reta diretriz ao vertice

ai com a distancia tem que ser igual a 3 então um
ponto x pertencente a parabola tem que estar distante 3 unidades da reta x=-1

então

3=x-(-1)
3=x+1
x=2
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}