• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Área do Triângulo

Área do Triângulo

Mensagempor Cleyson007 » Sex Mai 14, 2010 13:07

Bom dia!

Se A(10,0) e B(-5,3.\sqrt[]{3}) são pontos de uma elipse cujos focos são {F}_{1}(8,0) e {F}_{2}(-8,0), calcule a área do triângulo B{F}_{1}{F}_{2}.

Apresentando minha resolução:
Imagem

Gostaria de saber se alguém pode apresentar algum outro modo de resolução, e fazer o desenho da elipse.

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Área do Triângulo

Mensagempor Douglasm » Sex Mai 14, 2010 13:38

Olá Cleyson. Outro jeito de resolver, bem parecido o seu, só que mais direto é ver que o comprimento da base é 16 (distancia entre os focos) e a altura é 3\sqrt{3}:

A = \frac{b.h}{2} = \frac{16 . 3\sqrt{3}}{2} = 24\sqrt{3}

Para desenhar a eplipse, só precisamos dos valores de a e b. Para determinarmos a, basta notarmos que na elipse a soma das distâncias de um ponto aos focos é constante e igual a 2a. Como você mesmo já determinou, a soma das distâncias é igual a 14 + 6 = 20, portanto a = 10. Sabendo a e c (lembrando que a distância focal é igual a 2c), descobrimos b pelo teorema de Pitágoras:

a^2 = b^2 + c^2 \! \therefore

b^2 = 10^2 - 8^2 = 36\! \therefore

b = 6

Como os focos estão no eixo x e o centro é em (0,0), temos a equação da elipse:

\frac{(x-x_c)^2}{a^2} + \frac{(y-yc)^2}{b^2} = 1 \! \therefore

\frac{x^2}{100} + \frac{y^2}{36} = 1

Tendo a equação da elipse, é fácil desenhá-la. Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.