• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Área do Triângulo

Área do Triângulo

Mensagempor Cleyson007 » Sex Mai 14, 2010 13:07

Bom dia!

Se A(10,0) e B(-5,3.\sqrt[]{3}) são pontos de uma elipse cujos focos são {F}_{1}(8,0) e {F}_{2}(-8,0), calcule a área do triângulo B{F}_{1}{F}_{2}.

Apresentando minha resolução:
Imagem

Gostaria de saber se alguém pode apresentar algum outro modo de resolução, e fazer o desenho da elipse.

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Área do Triângulo

Mensagempor Douglasm » Sex Mai 14, 2010 13:38

Olá Cleyson. Outro jeito de resolver, bem parecido o seu, só que mais direto é ver que o comprimento da base é 16 (distancia entre os focos) e a altura é 3\sqrt{3}:

A = \frac{b.h}{2} = \frac{16 . 3\sqrt{3}}{2} = 24\sqrt{3}

Para desenhar a eplipse, só precisamos dos valores de a e b. Para determinarmos a, basta notarmos que na elipse a soma das distâncias de um ponto aos focos é constante e igual a 2a. Como você mesmo já determinou, a soma das distâncias é igual a 14 + 6 = 20, portanto a = 10. Sabendo a e c (lembrando que a distância focal é igual a 2c), descobrimos b pelo teorema de Pitágoras:

a^2 = b^2 + c^2 \! \therefore

b^2 = 10^2 - 8^2 = 36\! \therefore

b = 6

Como os focos estão no eixo x e o centro é em (0,0), temos a equação da elipse:

\frac{(x-x_c)^2}{a^2} + \frac{(y-yc)^2}{b^2} = 1 \! \therefore

\frac{x^2}{100} + \frac{y^2}{36} = 1

Tendo a equação da elipse, é fácil desenhá-la. Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.