• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria Analítica] Reta Tangente a Circunferência

[Geometria Analítica] Reta Tangente a Circunferência

Mensagempor RasecAlmeida » Qui Out 16, 2014 13:57

CESGRANRIO - 2011) A circunferência ?: x2 - 4x + y2 - 4y + 3 = 0 i = 0 intersecta o eixo das ordenadas nos pontos P (0,y1) com Q (0, y2)

Qual a equação da reta que é tangente a ? no ponto P?


- Depois de achar o C (2,2) e o R = raíz de 5 eu tento calcular através da distância do centro e a raíz o valor de y1, porém não consigo achar uma raíz válida. Gostaria da ajuda de vcs!
RasecAlmeida
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Out 16, 2014 13:50
Formação Escolar: GRADUAÇÃO
Área/Curso: Geologia
Andamento: formado

Re: [Geometria Analítica] Reta Tangente a Circunferência

Mensagempor adauto martins » Sex Out 17, 2014 12:19

eq.circunferencia:({x-2})^{2}+({y-2})^{2}-\sqrt[2]{5}=0
eq.da reta:ax+by+c=0...no ponto(0,y1),sera:0.x+{y}_{1}y+c=y{y}_{1}+c=0...
{d}_{p,c}=\left|(y(1).2+c)/y(1) \right|=\sqrt[2]{5}\Rightarrow2+(c/{y}_{1})=\sqrt[2]{5\Rightarrow}c/{y}_{1}=\sqrt[2]{5}-2...{y}_{1}/c=(1/(\sqrt[2]{5}-2))\Rightarrow (c/(\sqrt[2]{5}-2))y+c=0,onde  c\in\Re
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)