• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria Analítica] - Encontrar o módulo de s.

[Geometria Analítica] - Encontrar o módulo de s.

Mensagempor Nicolas1Lane » Dom Mar 23, 2014 00:33

A questão quer que se encontre a partir de uma relação aonde o s=u+v+w sendo que u, v e w formam dois a dois ângulos de 60º e ainda que o módulo de u é 4, o de v é 3 e finalmente w igual a 1. Determinar então o módulo do vetor s. Que deve dar raiz de 35.

O que eu tentei até agora foi usar a relação de ângulo entre 2 vetores com ângulo teta 60º para pegar o resultado já que eu já tinha alguns módulos. Mas o modo como tenho os dados me deixaram incerto de como prosseguir corretamente.

s=u+v+w pensei em substituir nesta relação os módulos, mas não encontrei sentido nesta ideia e como não tenho vetor algum fica um pouco mais complicado.
Eu já estou tentando a tarde inteira nesta questão e nada do que resolvo fecha com a que supostamente deveria.
Será que poderiam me ajudar ao menos como trabalhar esta relação com o ângulo para eu fazer o resto. Estou simplesmente perdido já que o que tentei até agora não resultou no esperado.
Nicolas1Lane
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Set 11, 2013 23:25
Formação Escolar: ENSINO FUNDAMENTAL I
Área/Curso: Exatas/Ciência da Computação
Andamento: cursando

Re: [Geometria Analítica] - Encontrar o módulo de s.

Mensagempor Russman » Dom Mar 23, 2014 18:58

Basta você lembrar que

s= \left | \overrightarrow{s} \right | = \sqrt{\overrightarrow{s} \cdot\overrightarrow{s}}

Como \overrightarrow{s} = \overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}, então

\overrightarrow{s} \cdot\overrightarrow{s} = (\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w})(\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}) = \overrightarrow{u} \cdot\overrightarrow{u}+\overrightarrow{u} \cdot\overrightarrow{v}+\overrightarrow{u} \cdot\overrightarrow{w}+\overrightarrow{v} \cdot\overrightarrow{u}+\overrightarrow{v} \cdot\overrightarrow{v}+\overrightarrow{v} \cdot\overrightarrow{w}+\overrightarrow{w} \cdot\overrightarrow{u}+\overrightarrow{w} \cdot\overrightarrow{v}+\overrightarrow{w} \cdot\overrightarrow{w}

que simplifica-se-a ,dada configuração dos vetores,

s^2 = u^2+v^2+w^2 + \left 2(uv+uw+vw  \right )\cos 60^{\circ}
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Geometria Analítica] - Encontrar o módulo de s.

Mensagempor Nicolas1Lane » Dom Mar 23, 2014 19:13

Muito obrigado mesmo.
Nicolas1Lane
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Set 11, 2013 23:25
Formação Escolar: ENSINO FUNDAMENTAL I
Área/Curso: Exatas/Ciência da Computação
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: