por Nicolas1Lane » Dom Mar 23, 2014 00:33
A questão quer que se encontre a partir de uma relação aonde o s=u+v+w sendo que u, v e w formam dois a dois ângulos de 60º e ainda que o módulo de u é 4, o de v é 3 e finalmente w igual a 1. Determinar então o módulo do vetor s. Que deve dar raiz de 35.
O que eu tentei até agora foi usar a relação de ângulo entre 2 vetores com ângulo teta 60º para pegar o resultado já que eu já tinha alguns módulos. Mas o modo como tenho os dados me deixaram incerto de como prosseguir corretamente.
s=u+v+w pensei em substituir nesta relação os módulos, mas não encontrei sentido nesta ideia e como não tenho vetor algum fica um pouco mais complicado.
Eu já estou tentando a tarde inteira nesta questão e nada do que resolvo fecha com a que supostamente deveria.
Será que poderiam me ajudar ao menos como trabalhar esta relação com o ângulo para eu fazer o resto. Estou simplesmente perdido já que o que tentei até agora não resultou no esperado.
-
Nicolas1Lane
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Qua Set 11, 2013 23:25
- Formação Escolar: ENSINO FUNDAMENTAL I
- Área/Curso: Exatas/Ciência da Computação
- Andamento: cursando
por Russman » Dom Mar 23, 2014 18:58
Basta você lembrar que

Como

, então

que simplifica-se-a ,dada configuração dos vetores,

"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Nicolas1Lane » Dom Mar 23, 2014 19:13
Muito obrigado mesmo.
-
Nicolas1Lane
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Qua Set 11, 2013 23:25
- Formação Escolar: ENSINO FUNDAMENTAL I
- Área/Curso: Exatas/Ciência da Computação
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Geometria Analítica] Encontrar a reta t
por -civil- » Ter Ago 09, 2011 21:49
- 1 Respostas
- 2109 Exibições
- Última mensagem por LuizAquino

Qui Ago 11, 2011 23:31
Geometria Analítica
-
- [geometria analítica e calculo vetorial] modulo de um vetor
por Suellem Albuquerque » Sex Mar 28, 2014 15:36
- 0 Respostas
- 1111 Exibições
- Última mensagem por Suellem Albuquerque

Sex Mar 28, 2014 15:36
Geometria Analítica
-
- [Geometria Analítica] Encontrar a eq. vetorial da reta
por -civil- » Qua Ago 10, 2011 16:16
- 3 Respostas
- 2277 Exibições
- Última mensagem por LuizAquino

Qui Ago 18, 2011 10:15
Geometria Analítica
-
- [Geometria Analítica] Encontrar os vértices do hexágono
por -civil- » Qua Ago 10, 2011 16:51
- 1 Respostas
- 1990 Exibições
- Última mensagem por LuizAquino

Sex Ago 12, 2011 12:44
Geometria Analítica
-
- [Geometria Espacial] Encontrar os lados dos triângulos
por rochadapesada » Ter Abr 16, 2013 19:40
- 3 Respostas
- 2828 Exibições
- Última mensagem por young_jedi

Qua Abr 17, 2013 20:51
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.