• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada de vetores unitários

Derivada de vetores unitários

Mensagempor Jhenrique » Sex Jan 31, 2014 18:55

Como eu faço para derivar um vetor unitário? Aliás, como esse assunto se encaixa com os símbolos de christoffel, com derivadas parciais versus totais de vetores untitários... enfim, qual é o passo a passo para derivar um vetor unitário? Qual a fórmulas geral, qual a regra?
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado

Re: Derivada de vetores unitários

Mensagempor Russman » Sáb Fev 01, 2014 00:48

Vetor unitário, por definição, tem módulo igual a 1. Assim, basta você derivar apenas o direção e o sentido, já que a derivada do módulo é nula.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Derivada de vetores unitários

Mensagempor Jhenrique » Sáb Fev 01, 2014 01:04

na prática, como fica a equação?
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado

Re: Derivada de vetores unitários

Mensagempor Russman » Sáb Fev 01, 2014 02:26

Depende de como você expressará os vetores, logicamente. Comece com

\overrightarrow{u} = \frac{\overrightarrow{v}}{\left \| \overrightarrow{v} \right \|}

especificando a base de \overrightarrow{v}.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Derivada de vetores unitários

Mensagempor Jhenrique » Sáb Fev 01, 2014 08:26

Han? Eu não entendi exatamente o que significa especificar a base...

Contudo, há uma outra questão muito relevante que até agora eu não entendi...
segundo o wolfram http://mathworld.wolfram.com/Cylindrica ... nates.html

A derivada do vetor unitário r com relação a váriavel teta é

dr/d? = ?

Mas pelo símbolos de christoffel que constam lá a derivada fica como:

dr/d? = 1/r ?

O que não pode ser verdade, uma dessas duas equações acima tem que estar errada, ou não, não sei. Como que eu uso os símbolos de christoffel corretamente?
"A solução errada para o problema certo é anos-luz melhor do que a solução certa para o problema errado." - Russell Ackoff
Jhenrique
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Dom Mai 15, 2011 22:37
Formação Escolar: ENSINO MÉDIO
Área/Curso: Técnico em Mecânica
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}