• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Reta e Circunferência] UESB 2011.2

[Reta e Circunferência] UESB 2011.2

Mensagempor Leocondeuba » Ter Nov 05, 2013 22:05

Olá a todos. Esta questão eu tentei resolvê-la e marquei a alternativa 05). Porém, no gabarito diz que a certa é a 03). Logo, fiquei com dúvida em relação a esta questão. Obrigado a todos desde já.

Imagem

Wassily Kandisky foi um pinto escritor russo que se destacou pela qualidade de suas obras, bem como por introduzir a abstração nas artes visuais. (ARTEDUCA, 2011)

Na figura, ve-se uma de suas obras, Composição VIII, 1923. Óleo sobre tela, Museu Solomon R. Guggenheim, Nova Iorque. Nela, pode-se observar a presença de várias representações de circunferências e retas, algumas das quais com pontos comuns.

Supondo-se que, na figura, as duas retas r e s tenham equações r: 8x + 6y + 9 = 0 e s: 3x - 4y - 1 = 0 e uma circunferência ?: (x - 5)² + (y + 2)² = 16, pode-se afirmar que as posições relativas entre r e s e entre r e ? são, respectivamente,

01) retas paralelas e reta secante à circunferência
02) retas paralelas e reta tangente à circunferência
03) retas perpendiculares e reta secante à circunferência.
04) retas perpendiculares e reta tangente à circunferência
05) retas concorrentes não perpendiculares e reta exterior à circunferência
Leocondeuba
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sáb Mai 11, 2013 19:18
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}