por carolina camargo » Dom Nov 22, 2009 13:12
Como achar a equação de uma parábola, sabendo-se que seu vértice coincide com o ponto

, seu parâmetro é p, seu eixo é paralelo ao eixo Oy e a parábola se afasta no infinitro.
1) no sentido positivo do eixo oy (a parábola é chamada ascendente)
2) no sentido negativo do eixo Oy (a parábola é dita descendente)
este exercício se tornou difícil pra mim pois o enunciado não diz se o vértice da parábola está na origem. e resolvendo como se tivesse não deu certo...
se alguém souber resolver ou tiver alguma dica, fcarei muito grata!
abraço!
-
carolina camargo
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Ter Jun 16, 2009 16:21
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por Lucio Carvalho » Dom Nov 22, 2009 13:57
Olá Carolina,
Antes de mais, boa tarde de Domingo.
Tentarei ajudar.
Se a parábola não tem vértice na origem, o seu vértice é V(h, k) e mantém-se com o eixo principal paralelo ao eixo "y", com a concavidade voltada para cima, a equação será:

Se tiver concavidade voltada para baixo, a equação será:

Espero ter ajudado!
-

Lucio Carvalho
- Colaborador Voluntário

-
- Mensagens: 127
- Registrado em: Qua Ago 19, 2009 11:33
- Localização: Rua 3 de Fevereiro - São Tomé
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Física/Química
- Andamento: formado
por carolina camargo » Dom Nov 22, 2009 14:18
boa tarde de domingo!
mas como vc chegou à essa fomula? como a deduziu?
obrigada pela ajuda!
alguém sabe o método de dedução dessa fórmula??
-
carolina camargo
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Ter Jun 16, 2009 16:21
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação de uma parábola
por Gabi 15 » Seg Nov 14, 2011 11:24
- 3 Respostas
- 1773 Exibições
- Última mensagem por joaofonseca

Seg Nov 14, 2011 22:05
Geometria Analítica
-
- equação de uma parábola
por Ana Maria da Silva » Sex Jun 14, 2013 19:11
- 1 Respostas
- 1113 Exibições
- Última mensagem por Ana Maria da Silva

Sex Jun 21, 2013 16:03
Geometria Analítica
-
- cônicas:equação da parabola
por may » Ter Jul 12, 2011 21:35
- 2 Respostas
- 11315 Exibições
- Última mensagem por may

Sex Jul 15, 2011 00:46
Geometria Analítica
-
- [Determinar equação da Parábola]
por aliceleite » Ter Set 04, 2012 20:20
- 1 Respostas
- 1438 Exibições
- Última mensagem por Russman

Qua Set 05, 2012 01:31
Funções
-
- [conica] achar a equação da parábola
por Ge_dutra » Sáb Mar 16, 2013 21:47
- 4 Respostas
- 3132 Exibições
- Última mensagem por Ge_dutra

Qua Abr 03, 2013 00:06
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.