• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria Analitica] Equação de reta

[Geometria Analitica] Equação de reta

Mensagempor LucasSG » Qui Jun 06, 2013 22:45

Escreva uma equação vetorial da reta r concorrente com s, paralela ao plano pi, e perpendicular a reta AB. São dados pi: 2x-y+3z-1=0, A=(1,0,1), B=(0,1,2), s: X=(4,5,0)+a(3,6,1)

Não consigo resolver esse exercício, eu sei de algumas coisas:

Se r é paralela ao plano pi, ela é ortogonal ao vetor (2,-1,3), que é o vetor normal ao plano pi. Logo o produto escalar de r com (2,-1,3) sendo r o vetor diretor de r tem que ser nulo.
Se r é perpendicular a reta AB, então r.(-1,1,1)=0 (o produto escalar do vetor diretor da reta r com o vetor AB tem que ser nulo.)
Mas se eu escrevo a reta r na forma: X=(a,b,c)+y(m,n,p), eu tenho 7 incognitas nessa equação, e mesmo resolvendo os sistemas anteriores ainda me sobrariam varias, não sei bem como posso usar as informações de que r é concorrente com r e perpendicular a reta AB. (Eu acredito que tenho que encontrar os pontos onde as retas se interceptam, mas não sei como isso vai me ajudar, já que eu adicionaria varios parametros das outras retas ao sistema).

Por favor, podem me ajudar a prosseguir com a resolução?

Obrigado.
LucasSG
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Qua Mai 22, 2013 08:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: [Geometria Analitica] Equação de reta

Mensagempor e8group » Sáb Jun 08, 2013 22:15

Seguindo seu raciocínio , seja r : X = (a,b,c) + \gamma (m,n,p) .
Se r\perp l : X = A + \lambda \overrightarrow{AB}\implies \exists! P_0=(x_0,y_0,z_0) \in r,s (1) e \overrightarrow{AB} \perp \vec{d_r}=(m,n,p) \implies \vec{d_r} \cdot \overrightarrow{AB} = 0 (2).

Se r \parallel \pi \implies \vec{d_r} \perp \overrightarrow{N_{\pi}} = (2,-1,3)  \implies \vec{d_r} \cdot \overrightarrow{N_{\pi}} = 0 (3) . Por (2),(3) teremos um sistema de três incógnitas para 2 equações ,poderemos por exemplo escreverm,n em função de p .Assim , o conjunto dos vetores múltiplos de p é o conjunto dos vetores diretores de r ,portanto a escolha para p é arbitrária .

Se r ,s são concorrentes,então ambas retas possuem um único ponto em comum (4) .Suponha que P_1 seja este ponto .Tente utilizar (4) e (1) para concluir .Comente as dúvidas .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}