• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida : Teorema de Pitagoras

Dúvida : Teorema de Pitagoras

Mensagempor Mariana111 » Seg Out 26, 2009 17:30

Me ajudem a resolver esses problemas por favor ! :

Primeiro problema -> Em um triângulo retângulo ABC , a diferença entre os catetos é 2 cm e o produto é 48 cm² . Calcule :

a) a hipotenusa deste triângulo

b) a altura relativa a hipotenusa .

c) as projeções dos catetos sobre a hipotenusa .

Segundo problema -> Na rua da esquina existia um poste com 5 metros de altura . Num dia de tempestade , o poste tombou embatendo numa janela que se encontra a um terço da altura do prédio onde morava João . Sabendo que a distância do poste ao edifício é de 2 metros , calcule a altura do prédio em causa.

obrigada.
Mariana111
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Out 26, 2009 17:00
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando

Re: Dúvida : Teorema de Pitagoras

Mensagempor Cleyson007 » Seg Out 26, 2009 18:51

Boa noite!

Seja bem vinda ao Ajuda Matemática!

Mariana, vou ser bem breve... tenho aula daqui a pouco.

Quanto a letra a:

Monte o sistema de equações: c-b=2

bc=48

Resolvendo o sistema, você encontrará os valores de b e c. Para achar o valor da hipotenusa, jogue no teorema de Pitágoras: {a}^{2}={b}^{2}+{c}^{2}

Quanto a letra b:

A altura relativa à hipotenusa pode ser encontrada, usando a fórmula: a.h=b.c

Quanto a letra c:

As projeções podem ser encontradas usando as fórmulas: {b}^{2}=a.n

m=\frac{{c}^{2}}{a}

Depois respondo a segunda questão. :)

Comente qualquer dúvida. :y:

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Dúvida : Teorema de Pitagoras

Mensagempor Mariana111 » Seg Out 26, 2009 18:59

a letra a não consigo entender quando faço c-b=2 e cb=48 como eu resolvo isso e o que eu faço depois ?
Mariana111
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Out 26, 2009 17:00
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando

Re: Dúvida : Teorema de Pitagoras

Mensagempor Mariana111 » Seg Out 26, 2009 19:14

Muito obrigada pela ajuda da 1ª questão ! =)
Mariana111
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Out 26, 2009 17:00
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando

Re: Dúvida : Teorema de Pitagoras

Mensagempor Molina » Seg Out 26, 2009 20:23

Mariana111 escreveu:a letra a não consigo entender quando faço c-b=2 e cb=48 como eu resolvo isso e o que eu faço depois ?

Confirma Mariana, já conseguiu entender o procedimento?

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Dúvida : Teorema de Pitagoras

Mensagempor Mariana111 » Seg Out 26, 2009 21:08

Consegui ! :y: :-D
Mariana111
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Out 26, 2009 17:00
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?