por roberta emiliano » Qua Nov 28, 2012 11:54
Questão 02- João é um pequeno produtor de farinha para uso medicinal. Deseja embalar a farinha que produz em caixinhas de papelão. A base dessa caixa é retangular, com uma das extremidades no formato da metade de um disco. A altura (espessura) da caixa é de 4 cm e a restrição é que o perímetro da base, seja constante e igual a 50 cm. João deseja fabricar essas caixas de modo que caibam o máximo possível de farinha. CALCULE as dimensões dessa caixa de modo que as exigências de João sejam satisfeitas.
-
roberta emiliano
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Nov 28, 2012 11:42
- Formação Escolar: GRADUAÇÃO
- Área/Curso: sistemas de informação
- Andamento: cursando
por Russman » Qua Nov 28, 2012 14:08
Você tentou alguma coisa? Escreveu as equações ao menos ?
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por roberta emiliano » Qua Nov 28, 2012 14:58
Não consegui colocar a imagem da figura mas ela fala o seguinte: Que o perímetro do retângulo é 50 e corresponde a área pontilhada da figura que é o raio do semi circulo. Então pensei no seguinte:
Fórmula do raio da circunferência me dá o cumprimento e aí eu dividiria ele por 2.
C= 2* pi* r
C= 2*3,14*50
C=314
Então area do semicirculo seria 157?
Tentei pela área do triângulo que é base * altura
tendo o perímetro como 50, e ele sendo a soma de todos os lados, e tendo a altura igual 4.
a base seria 21?
e a área do retângulo seria 84?
Não sei como fazer pra calcular quanto caberia na caixa, pode me ajudar no raciocínio?
-
roberta emiliano
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Nov 28, 2012 11:42
- Formação Escolar: GRADUAÇÃO
- Área/Curso: sistemas de informação
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Por favor me ajudem a resolver isso!
por luisemilio » Sáb Nov 14, 2009 20:51
- 1 Respostas
- 1949 Exibições
- Última mensagem por thadeu

Seg Nov 16, 2009 12:08
Cálculo: Limites, Derivadas e Integrais
-
- Me ajudem a resolver por favor urgente!! obrigada
por mieleoterio » Dom Ago 18, 2013 12:50
- 0 Respostas
- 2648 Exibições
- Última mensagem por mieleoterio

Dom Ago 18, 2013 12:50
Estatística
-
- NAO CVONSIGO RESOLVER ESTE EXERCIO ME AJUDEM POR FAVOR.
por weverton » Sex Mai 14, 2010 02:04
- 2 Respostas
- 2266 Exibições
- Última mensagem por weverton

Sáb Mai 15, 2010 16:13
Matemática Financeira
-
- Ajudem, por favor. Não sei como resolver esse problema.
por Krad » Qua Ago 21, 2013 16:27
- 6 Respostas
- 4097 Exibições
- Última mensagem por Krad

Sáb Ago 24, 2013 12:22
Equações
-
- Não consigo resolver esta questão, por favor me ajudem!
por Derlan » Ter Jul 04, 2017 15:32
- 0 Respostas
- 1866 Exibições
- Última mensagem por Derlan

Ter Jul 04, 2017 15:32
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.