por renan_a » Sex Nov 16, 2012 10:00
Olá, estou com dúvida em dois exercícios de parábola, e para no enxer de tópicos, resolvi colocar os dois em um tópico.
1- Em que ponto a parábola de V(-2,0) e F (0,0) intercepta o eixo dos y
2- Encontrar sobre a parábola y²=4x um ponto tal que sua distância à diretriz seja igual a 3
Desde já , agradeço a quem me ajudar.
Abraço
-
renan_a
- Usuário Dedicado

-
- Mensagens: 32
- Registrado em: Ter Set 25, 2012 08:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: cursando
por young_jedi » Sex Nov 16, 2012 12:45
esta parabola é do tipo

o vertice esta em (h,k)=(0,0) e o foco (h+p,k)
portanto
h=-2,k=0,p=2

agora vamos ver onde ele cruza o eixo y (são os pontos onde x=0)


y=-4 ou y=4
______________________________________________________________________
2)
pela equação nos temos que
o vertcie (h,k)=(0,0)
p=1
então o foco
f(1,0)
então a reta diretriz esta em x=-1
então um ponto em que a distancia é igual a 3 sera
3=x-(-1)
x=2
portanto



portano um ponto seria

-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por renan_a » Sex Nov 16, 2012 13:20
Valeu pela resposta, meu velho! =)
o número eu entendi.
Só que no dois eu fiquei meio boiando no que diz respeito ao V ser ( 0,0)...
A primeira coisa que eu descobri foi que o FOCO(1,0) , até aí beleza, mas o Vértice não poderia ser qualquer valor menor que x=1 ??
-------------------------------------------
Na parte em que tu fez: x-(-1)=3 -> x=2 , tu fez a equação da diretriz igual a 3? (x+1=3)
-
renan_a
- Usuário Dedicado

-
- Mensagens: 32
- Registrado em: Ter Set 25, 2012 08:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: cursando
por young_jedi » Sex Nov 16, 2012 14:40
no segundo chega -se a essa conclusão analisando a função

como a equação é

então chegamos a conculsão que p=1, k=0 e h=0
na parte da equação da diretriz
eu falei que a reta diretriz é x=-1
a distancia do vertice ao foco é igual a distancia da reta diretriz ao vertice
ai com a distancia tem que ser igual a 3 então um
ponto x pertencente a parabola tem que estar distante 3 unidades da reta x=-1
então
3=x-(-1)
3=x+1
x=2
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Cônicas: Parábola]
por Ana_Rodrigues » Sáb Nov 19, 2011 11:39
- 1 Respostas
- 1579 Exibições
- Última mensagem por LuizAquino

Dom Nov 20, 2011 12:19
Geometria Analítica
-
- [cônicas] parábola
por renan_a » Qua Nov 14, 2012 19:23
- 2 Respostas
- 9581 Exibições
- Última mensagem por renan_a

Sex Nov 16, 2012 09:51
Geometria Analítica
-
- cônicas:equação da parabola
por may » Ter Jul 12, 2011 21:35
- 2 Respostas
- 11302 Exibições
- Última mensagem por may

Sex Jul 15, 2011 00:46
Geometria Analítica
-
- [Cônicas] O lugar geométrico dos vértices da parábola.
por Matheus Brito 2014 » Qui Set 10, 2015 22:40
- 1 Respostas
- 1465 Exibições
- Última mensagem por nakagumahissao

Sex Set 11, 2015 14:47
Geometria Analítica
-
- [Cônicas]Retas tangentes à cônicas
por Hopkins » Ter Fev 28, 2017 22:39
- 0 Respostas
- 1419 Exibições
- Última mensagem por Hopkins

Ter Fev 28, 2017 22:39
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.