• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria... Uma lata cilíndrica cheia para distribuirmos...

Geometria... Uma lata cilíndrica cheia para distribuirmos...

Mensagempor joedsonazevedo » Qui Nov 15, 2012 12:03

Olá, estou tentando resolver esta questão... mas não chego a um
desenvolvimento satisfatório... por favor me ajudem ;)

--> Uma lata cilíndrica está completamente cheia de determinado suco.
Esse líquido deve ser totalmente distribuído em x copos cilíndricos, cuja
altura é um quarto da altura da lata e o raio dois quintos do raio da lata.
Considerando-se que os copos ficaram totalmente cheios, pode-se
afirmar que o valor de x é:

a) 9
b) 16
c) 18
d) 25
e) 30

Até o momento eu tentei solucionar da seguinte forma:

A= R.H

(A)lata = x
(A)copo= x/4
(R)lata = y
(R)copo= y.2/5

Então:

Área da lata = xy
Área do copo: x/4.2y/5 \Rightarrow A= 2xy/20 \Rightarrow A= xy/10
e daí nao sei mais como desenvolver... se igualo as informações... ou o quê;;;
por favor me ajudem... :)
joedsonazevedo
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qui Nov 08, 2012 14:23
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. em Informática
Andamento: formado

Re: Geometria... Uma lata cilíndrica cheia para distribuirmo

Mensagempor DanielFerreira » Qui Nov 15, 2012 14:10

O volume é dado por: \boxed{V = \pi \cdot r^2 \cdot h}

\\ \textup{Lata} \begin{cases} \textup{raio: a} \\ \textup{altura}: b \end{cases} \,\, \textup{e} \,\,\,\,\,\,\, \textup{Copo} \begin{cases} \textup{raio}: \frac{2a}{5} \\ \textup{altura}: \frac{b}{4} \end{cases}

O valor de x é dado fazendo a divisão: volume da lata pelo volume do copo, isto é: x = \frac{V_l}{V_c}

Tente concluir o exercício.
Encontrei 25 e você?
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado

Re: Geometria... Uma lata cilíndrica cheia para distribuirmo

Mensagempor joedsonazevedo » Qui Nov 15, 2012 15:13

danjr5 Muito obrigado por sua ajuda... :) o meu resultado agora tambem deu 25...
e confere com o gabarito... muito obrigado novamente... :)
joedsonazevedo
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qui Nov 08, 2012 14:23
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. em Informática
Andamento: formado

Re: Geometria... Uma lata cilíndrica cheia para distribuirmo

Mensagempor DanielFerreira » Qui Nov 15, 2012 18:34

Caro Joedson,
não há de quê!

Daniel F.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}