• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação de planos] Verificar meu raciocínio

[Equação de planos] Verificar meu raciocínio

Mensagempor MrJuniorFerr » Qua Out 10, 2012 17:03

Olá pessoal, olhem este exercício:
Escreva as equações paramétricas do plano paralelo ao eixo z e que contém a interseção dos planos\pi1: x+2y+3z=4 e \pi2: 2x+y+z=2.

Gabarito:
x=\frac{1}{3}-t
y=\frac{1}{3}+5t
z=1+1s-3t

Eu o fiz, mas não tenho certeza se fiz corretamente pois não bateu com o gabarito. Por favor, analisem e vejam se meu raciocínio está correto.

A primeira coisa que fiz foi achar a interseção dos dois planos dados. Fiz o sistema por escalonamento, e achei este ponto I(x,\frac{-6+15x}{-3},3x). Sabe-se que a interseção de dois planos é uma reta, portanto este ponto I é um ponto pertencente desta reta. Atribuindo valores ao x do ponto I, temos:
Atribuindo x=0,
encontramos este ponto da reta:
A(0,2,0)
Atribuindo x=1,
encontramos este ponto da reta:
B(1,-3,3)
Portanto, temos 2 pontos da reta e posso achar o vetor diretor \overrightarrow{v}, então temos \overrightarrow{AB}=(1,-5,3).
Para achar a equação paramétrica do plano, preciso de mais um vetor que não seja colinear a \overrightarrow{AB}. Somente com estes dados não sei achar mais um vetor não colinear ao vetor obtido.
Então, decidi primeiro encontrar a equação geral do plano.
Primeiro, atribui mais um valor ao x de I(x,\frac{-6+15x}{-3},3x) para ter mais um ponto da reta (sei que não havia necessidade, pois eu poderia usar um dos pontos já obtidos, mas optei por faze-lo).
Atribuindo x=2,
obtive C(2,-8,6).
Então, para obter a equação geral do plano, tenho este ponto C e sei que o plano é paralelo ao eixo z, ou seja, a variável z é livre.
Então temos:
ax+by+d=0, dividindo a equação por a

x+\frac{by}{a}+\frac{d}{a}=0, colocando m=\frac{b}{a} e n=\frac{d}{a} temos:

x+my+n=0, substituindo o ponto C(2,-8,6)

2-8m+n=0, isolando o n

n= -2+8m, substituindo o valor de n em x+my+n=0

x+my-2+8m=0, atribuindo um valor a variável m

m=2

x+(2)y-2+8.(2)=0

\pi: x+2y+14=0

Portanto, encontrei a equação geral do plano a partir deste método que aprendi com o young_jedi daqui do ajudamatematica.com
Agora preciso achar mais um ponto qualquer pertencente a este plano e atribuindo valor ao x, temos
x=0

2y+14=0

y=-7,

Então encontrei um ponto D(0,-7,0) pertencente ao plano.
Fazendo \overrightarrow{AD}, encontro um vetor não colinear ao \overrightarrow{AB}
\overrightarrow{AD}=(0,-9,0)

Agora, tenho 2 vetores coplanares \overrightarrow{AB}=(1,-5,3) e \overrightarrow{AD}=(0,-9,0) e não colineares e o ponto A(0,2,0).
Então obtive que a equação paramétrica do plano é:

x=s
y=2-5s-9t
z=3s

Estou certo? Obrigado
Editado pela última vez por MrJuniorFerr em Qua Out 10, 2012 20:31, em um total de 1 vez.
Avatar do usuário
MrJuniorFerr
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 119
Registrado em: Qui Set 20, 2012 16:51
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Alimentos
Andamento: cursando

Re: [Equação de planos] Verificar meu raciocínio

Mensagempor young_jedi » Qua Out 10, 2012 19:18

MrJuniorFerr

voce começou bem o exercicio
encontrando a equação da reta I, agora oque voce precisa é encontrar um vetor não colinear a \overrightarrow{AB}
que seja coplanar, note que se o plano é paralelo ao eixo z um vetor um vetor coplanar seria

V=(0,0,1)

agora voce tem dois vetores não colineares e que definem o plano \overrightarrow{V} e \overrightarrow{AB}

com esses dois da pra encontrar a equação do plano
não é necessario encontrar a forma geral da equação do plano, da maneira que voce estava fazendo seria muito mais trabalhoso.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.