por CarolMarques » Sáb Set 01, 2012 19:38
Olá,
Na questão a seguir:
Reduza a equação a uma forma mais simples e identifique a conica correspondente:
![x²-2xy+y²-5\sqrt[2]{2} x +3\sqrt[2]{2} x+10=0 x²-2xy+y²-5\sqrt[2]{2} x +3\sqrt[2]{2} x+10=0](/latexrender/pictures/1122555417b471f7d06ff8562ef776d5.png)
Nessa questão eu acho que o gabarito esta errado.
Essa equação define uma parabola de vértice (1,-2) {foi o que eu achei}. O gabarito diz que é uma parabola de vértice
Alguem poderiare resolver a questão pra comparar as respostas.
Obrigada
-
CarolMarques
- Usuário Dedicado

-
- Mensagens: 29
- Registrado em: Qui Mai 03, 2012 20:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por LuizAquino » Sáb Set 01, 2012 22:44
CarolMarques escreveu:Olá,
Na questão a seguir:
Reduza a equação a uma forma mais simples e identifique a conica correspondente:
![x²-2xy+y²-5\sqrt[2]{2} x +3\sqrt[2]{2} x+10=0 x²-2xy+y²-5\sqrt[2]{2} x +3\sqrt[2]{2} x+10=0](/latexrender/pictures/1122555417b471f7d06ff8562ef776d5.png)
Nessa questão eu acho que o gabarito esta errado.
Essa equação define uma parabola de vértice (1,-2) {foi o que eu achei}. O gabarito diz que é uma parabola de vértice
Alguem poderiare resolver a questão pra comparar as respostas.
Por favor, informe sua resolução para que possamos encontrar algum erro (caso exista). Isso poupará o tempo da pessoa que irá lhe ajudar, pois ela não precisa resolver o exercício inteiro.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por CarolMarques » Sáb Set 01, 2012 23:56
Como se trata de uma parábola eu começo pela rotação dos eixos:

Utilizandos as fórmulas de rotação :
A'=0 C'=0 D'= -2 E'= 8
Substituindo:
2y'² -2x' +8y'+10=0
y'²+4y'-x'+10=0
Completando os quadrados :
(y'+2)²=(x - 1)
Foi assim que eu fiz
-
CarolMarques
- Usuário Dedicado

-
- Mensagens: 29
- Registrado em: Qui Mai 03, 2012 20:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por LuizAquino » Dom Set 02, 2012 00:50
CarolMarques escreveu:Como se trata de uma parábola eu começo pela rotação dos eixos:

Utilizandos as fórmulas de rotação :
A'=0 C'=0 D'= -2 E'= 8
Aqui você cometeu um erro de digitação: o correto seria C' = 2.
CarolMarques escreveu:Substituindo:
2y'² -2x' +8y'+10=0
y'²+4y' -x'+10=0
Você cometeu outro erro de digitação: o correto seria y'² + 4y' - x' + 5 = 0.
CarolMarques escreveu:Completando os quadrados :
(y'+2)²=(x - 1)
Foi assim que eu fiz
Ainda com erros de digitação: seria (y' + 2)² = (x' - 1).
Fora os erros de digitação, o que você fez até aqui está correto: trata-se de uma parábola com vértice (1, -2). Mas note que esse vértice está no sistema x'Oy'. O que você obtém se escrevê-lo no sistema xOy?
ObservaçãoAinda falando sobre erros de digitação, a equação da cônica seria:

Note que você escreveu

ao invés de

.
Eu vou aproveitar agora para dar algumas dicas sobre o
LaTeX.
No ambiente LaTeX, não use o atalho de teclado para a potência 2 (ou seja, "²"). Isso gera um erro que faz aparecer "²" na sua escrita. Ao invés disso use apenas "^2".
Exemplos
a) Código:
- Código: Selecionar todos
[tex]x²[/tex]
Resultado:

.
b) Código:
- Código: Selecionar todos
[tex]x^2[/tex]
Resultado:

.
Além disso, lembre-se que quando escrevemos uma raiz quadrada não é necessário colocar o índice "2". Sendo assim, use apenas algo como "\sqrt{a}" ou invés de "\sqrt[2]{a}".
Exemplos
a) Código:
- Código: Selecionar todos
[tex]\sqrt[2]{a}[/tex]
Resultado:
![\sqrt[2]{a} \sqrt[2]{a}](/latexrender/pictures/1b9b49e8f2fe06f8a8b891c700d41ec5.png)
.
b) Código:
- Código: Selecionar todos
[tex]\sqrt{a}[/tex]
Resultado:

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por e8group » Dom Set 02, 2012 13:27
Bom dia . Tratando-se sobre o uso do "latex" gostaria de recomendar este site (
http://www.codecogs.com/latex/eqneditor.php?lang=pt-br ) como forma de estudo . Lá há uma tabela com fórmulas matemáticas e simbolos que podem auxiliar ,além disso o site compila latex para imagem (gif ,png , ...,etc ) que pode ajudar na visualização das expressões matemáticas .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Rotação de Eixos] Eliminar o termo misto
por luankaique » Qui Set 05, 2013 14:20
- 0 Respostas
- 2212 Exibições
- Última mensagem por luankaique

Qui Set 05, 2013 14:20
Geometria Analítica
-
- [Volumes de sólidos por rotação] Volume mudando os eixos
por Edmond Dantes » Sáb Out 20, 2018 11:31
- 2 Respostas
- 5654 Exibições
- Última mensagem por Edmond Dantes

Sáb Out 20, 2018 16:40
Cálculo: Limites, Derivadas e Integrais
-
- Paralelismo De eixos
por Claudin » Sáb Out 06, 2012 17:02
- 1 Respostas
- 1296 Exibições
- Última mensagem por young_jedi

Sáb Out 06, 2012 17:23
Geometria Analítica
-
- ângulos congruentes com os eixos coordenados
por allicord » Qui Out 31, 2013 16:24
- 0 Respostas
- 1067 Exibições
- Última mensagem por allicord

Qui Out 31, 2013 16:24
Geometria Analítica
-
- [Cálculo de área de triângulo] Com os três eixos coordenado.
por Matheus Lacombe O » Sáb Out 13, 2012 16:30
- 1 Respostas
- 3344 Exibições
- Última mensagem por e8group

Sáb Out 13, 2012 17:51
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.