• Anúncio Global
    Respostas
    Exibições
    Última mensagem

QUESTÃO DE GEOMETRIA ANALÍTICA (DUVIDA!!!)

QUESTÃO DE GEOMETRIA ANALÍTICA (DUVIDA!!!)

Mensagempor hudeslan » Qui Ago 13, 2009 18:15

SABENDO QUE O PONTO P SOBRE A RETA 3X-2Y+3=0 É EQUIDISTANTE DA ORIGEM E DO PONTO A(4,2), DETERMINAR A DISTÂNCIA DE P À ORIGEM.
A)2 RAIZ QUADRADA DE 3
B)3 RAIZ QUADRADA DE 2
C)RAIZ QUADRADA DE 10
D)RAIZ QUADRADA DE 13

LI EM VÁRIOS LIVROS DE MATEMÁTICA A ÚNICA FORMULA SEMELHANTE A QUESTÃO FOI USADA SEM SUCESSO NÃO SEI SE REALMENTE É ESSA AX+BX+C/RAIZ QUADRADA DE A AO QUADRADO + B AO QUADRADO. ENCONTREI RAIZ QUADRADA DE 13 PORÉM NÃO É A RESPOSTA CORRETA.
FICO NO AGUARDO.
hudeslan
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qua Ago 05, 2009 20:00
Formação Escolar: GRADUAÇÃO
Área/Curso: administração
Andamento: cursando

Re: QUESTÃO DE GEOMETRIA ANALÍTICA (DUVIDA!!!)

Mensagempor Felipe Schucman » Qui Ago 13, 2009 19:24

Boa Tarde,


Utilizando a fórmula da ponto a ponto:

P(x,y)
D(Origem,P) = raiz[(x - 0)^2 + (Y - 0)^2]
D = raiz(x^2+y^2)

D(A,P) = raiz[(x- 4)^2 + ( Y - 2)^2]
D = raiz[x^2 - 8x + 16 + y^2 - 4y + 4]= raiz[x^2 + y^2 - 8x - 4y + 20]

igualando as distancias, temos:

raiz[x^2 + y^2 - 8x - 4y + 20] = raiz(x^2+y^2) ---> elevamos tudo ao quadrado anulando as raizes...

x^2 + y^2 - 8x - 4y + 20 = x^2+y^2 ---> 8x + 4y -20 = 0

Essa reta contém os possiveis pontos equidistantes a origem e ao ponto A, sendo assim o cruzamento dela com a reta 3X-2Y+3=0, que também contém o ponto, resultará no ponto P:

3X-2Y+3=0 ---> x = (2y -3)3

8x + 4y -20 = 0, substituindo o X ----> 8(2y - 3)/3 + 4y - 20 = 0 ---> 16y/3 + 12y/3 = 28 ---> 28y/3 = 28 ---> y = 3

consequentemente x = 1(substituindo y em uma das retas):

P(1,3)

Então distancia da origem até o ponto P:

D(O,P) = raiz[(1 - 0)^2 + (3 - 0)^2] = raiz[1+9] = raiz[10].

Resposta C.

Se você achar mais facil é possivel a resolução geometricamente, mas esta ai a analítica.

Sobre seu erro, ocorre que essa formula que você citou é a distancia entre ponto e reta, mas na analitica é sempre a distancia mais curta que a formulá mostrará(fara como se você fizesse uma reta entre os dois pontos perpendicular a outra reta), e nada no exercicio diz que é a distancia mais curta dos pontos até a reta, então você não pode supor isso.

Espero ter ajudado!

P.S: Desculpe as fórmulas escritas, é que tenha dificuldade de usar o editor. Mas qualquer duvida que tiver é só perguntar.

Um abraço!
Felipe Schucman
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 52
Registrado em: Ter Jul 28, 2009 17:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia e Direito
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D