por GuilhermeOliveira » Dom Jun 24, 2012 22:54
Olá.
Estou com bastante dificuldades em resolver o seguinte problema:
Considere a cônica cuja equação é dada por
![8{x}^{2}-16xy+8{y}^{2}+\sqrt[]{2}x+\sqrt[]{2}y=0 8{x}^{2}-16xy+8{y}^{2}+\sqrt[]{2}x+\sqrt[]{2}y=0](/latexrender/pictures/aa684c3932de7a9a3ac09a8d151df0c5.png)
(a) Encontre mudanças apropriadas de coordenadas (rotação e/ou translação),
de modo que a equação resultante fique na forma canônica (padrão).
(b) Identifique a curva.
Minhas dificuldades:
[*]basicamente desenvolvimento do processo (preferencialmente de forma objetiva)
[*]saber quando a figura formada pode ser rotacionada e quando ela pode ser transladada
[*]como colocar equação resultante em uma base ( no caso na forma canônica)
[*]quais os fatores que determinam em qual sentido estarão os vetores encontrados que formarão o novo sistema de cordenadas (novo sistema devido a rotação)
[*]como definir quais são os vetores que representarão qual eixo (x e y) no novo sistema de cordenadas encontrados
Meu professor de gaal não é dos melhores, ele tá bem velhinho e, infelizmente, não está mais em condições de me ensinar da forma como eu gostaria. Em breve vou fazer uma prova dessa matéria e não sei muita coisa ainda, então, tenho que estudar basicamente sozinho.
Muito obrigado pela ajuda.
-
GuilhermeOliveira
- Novo Usuário

-
- Mensagens: 6
- Registrado em: Dom Jun 24, 2012 22:28
- Formação Escolar: GRADUAÇÃO
- Área/Curso: ciência da computação
- Andamento: cursando
por LuizAquino » Seg Jun 25, 2012 17:17
GuilhermeOliveira escreveu:Olá.
Estou com bastante dificuldades em resolver o seguinte problema:
Considere a cônica cuja equação é dada por
![8{x}^{2}-16xy+8{y}^{2}+\sqrt[]{2}x+\sqrt[]{2}y=0 8{x}^{2}-16xy+8{y}^{2}+\sqrt[]{2}x+\sqrt[]{2}y=0](/latexrender/pictures/aa684c3932de7a9a3ac09a8d151df0c5.png)
(a) Encontre mudanças apropriadas de coordenadas (rotação e/ou translação),
de modo que a equação resultante fique na forma canônica (padrão).
(b) Identifique a curva.
Minhas dificuldades:
[*]basicamente desenvolvimento do processo (preferencialmente de forma objetiva)
[*]saber quando a figura formada pode ser rotacionada e quando ela pode ser transladada
[*]como colocar equação resultante em uma base ( no caso na forma canônica)
[*]quais os fatores que determinam em qual sentido estarão os vetores encontrados que formarão o novo sistema de cordenadas (novo sistema devido a rotação)
[*]como definir quais são os vetores que representarão qual eixo (x e y) no novo sistema de cordenadas encontrados
Pelo que analiso em suas dificuldades, ao que parece você não sabe nem iniciar o exercício.
Nesse contexto, eu recomendo que primeiro você procure ler sobre esse assunto. Por exemplo, vide o seguinte livro:
Boulos, Paulo; Camargo, Ivan. Geometria Analítica: um tratamento vetorial. 3a ed., São Paulo, Pearson Education, 2005.
Nesse livro há vários exercícios resolvidos exibindo o passo a passo de como efetuar a translação e a rotação nas cônicas.
Depois que você fizer essa leitura, se você permanecer com dúvidas em alguma parte, então poste aqui até onde você conseguiu avançar.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [CONICAS] rotação e translação
por amigao » Sex Jun 28, 2013 19:31
- 1 Respostas
- 1096 Exibições
- Última mensagem por e8group

Sex Jul 12, 2013 12:00
Geometria Analítica
-
- Problemas matemáticos envolvendo equações.
por mynameisnandoo » Qui Out 06, 2011 14:57
- 0 Respostas
- 2481 Exibições
- Última mensagem por mynameisnandoo

Qui Out 06, 2011 14:57
Tópicos sem Interação (leia as regras)
-
- Equação de 2° grau, envolvendo problemas - exercicios
por Felipe_95 » Seg Out 04, 2010 20:49
- 4 Respostas
- 3004 Exibições
- Última mensagem por DanielRJ

Seg Out 04, 2010 22:40
Sistemas de Equações
-
- Equação de 2° grau, envolvendo problemas - exercicios
por mara alves » Sáb Set 17, 2011 13:08
- 1 Respostas
- 1526 Exibições
- Última mensagem por MarceloFantini

Sáb Set 17, 2011 13:32
Sistemas de Equações
-
- Problemas envolvendo diferentes áreas da matemática
por matheussi » Sáb Mar 22, 2014 14:34
- 0 Respostas
- 1434 Exibições
- Última mensagem por matheussi

Sáb Mar 22, 2014 14:34
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.