• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercício sobre condição de paralelismo - DÚVIDA

Exercício sobre condição de paralelismo - DÚVIDA

Mensagempor Danilo » Sáb Jun 02, 2012 03:56

Pessoal, estou apanhando para resolver um exercício aparentemente simples... lá vai !

Qual é o valor de r para que a reta de equação x-5y+20=0 seja paralela à reta determinada pelos pontos M (r,s) e N (2,1)?

Bom, primeiro sei que, para que as retas sejam paralelas é necessário que x/r = -5/s ou que os coeficientes angulares das retas sejam iguais. Também sei que, se eu possuir um ponto dado (por exemplo (2,1)) e mais o coeficiente angular eu obtenho a equação da reta. tentei utilizar a equação y-y0=m(x-x0) mas eu não cheguei a lugar algum. Não estou conseguindo encaixar todas essas informações para resolver o problema ! Quem puder me dar uma luz, ou qual caminho seguir, agradeço !!!!
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Exercício sobre condição de paralelismo - DÚVIDA

Mensagempor Russman » Sáb Jun 02, 2012 04:12

Primeiro você deve identificar a reta que passa pelos pontos M e N analiticamente.

Esta reta é y_{2} = ax + b tal que,

\left\{\begin{matrix}
M(r,s)\therefore s=ra+b\\ 
N(2,1)\therefore 1=2a+b
\end{matrix}\right.

Solucionando este sistema identificamos a reta como y_{2}= \left ( \frac{s-1}{r-2} \right )x + \left ( \frac{r-2s}{r-2} \right ).

Como o coeficiente angular da outra reta é 1/5, então para satisfazer a condição de paralelismo, é fato que

1/5 = \left ( \frac{s-1}{r-2} \right )

Ou seja,

r =5s-3.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Exercício sobre condição de paralelismo - DÚVIDA

Mensagempor Danilo » Sáb Jun 02, 2012 04:30

Russman escreveu:Primeiro você deve identificar a reta que passa pelos pontos M e N analiticamente.

Esta reta é y_{2} = ax + b tal que,

\left\{\begin{matrix}
M(r,s)\therefore s=ra+b\\ 
N(2,1)\therefore 1=2a+b
\end{matrix}\right.

Solucionando este sistema identificamos a reta como y_{2}= \left ( \frac{s-1}{r-2} \right )x + \left ( \frac{r-2s}{r-2} \right ).

Como o coeficiente angular da outra reta é 1/5, então para satisfazer a condição de paralelismo, é fato que

1/5 = \left ( \frac{s-1}{r-2} \right )

Ou seja,

r =5s-3.


Muito obrigado !
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.