• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Exercício sobre condição de paralelismo - DÚVIDA

Exercício sobre condição de paralelismo - DÚVIDA

Mensagempor Danilo » Sáb Jun 02, 2012 03:56

Pessoal, estou apanhando para resolver um exercício aparentemente simples... lá vai !

Qual é o valor de r para que a reta de equação x-5y+20=0 seja paralela à reta determinada pelos pontos M (r,s) e N (2,1)?

Bom, primeiro sei que, para que as retas sejam paralelas é necessário que x/r = -5/s ou que os coeficientes angulares das retas sejam iguais. Também sei que, se eu possuir um ponto dado (por exemplo (2,1)) e mais o coeficiente angular eu obtenho a equação da reta. tentei utilizar a equação y-y0=m(x-x0) mas eu não cheguei a lugar algum. Não estou conseguindo encaixar todas essas informações para resolver o problema ! Quem puder me dar uma luz, ou qual caminho seguir, agradeço !!!!
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Exercício sobre condição de paralelismo - DÚVIDA

Mensagempor Russman » Sáb Jun 02, 2012 04:12

Primeiro você deve identificar a reta que passa pelos pontos M e N analiticamente.

Esta reta é y_{2} = ax + b tal que,

\left\{\begin{matrix}
M(r,s)\therefore s=ra+b\\ 
N(2,1)\therefore 1=2a+b
\end{matrix}\right.

Solucionando este sistema identificamos a reta como y_{2}= \left ( \frac{s-1}{r-2} \right )x + \left ( \frac{r-2s}{r-2} \right ).

Como o coeficiente angular da outra reta é 1/5, então para satisfazer a condição de paralelismo, é fato que

1/5 = \left ( \frac{s-1}{r-2} \right )

Ou seja,

r =5s-3.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Exercício sobre condição de paralelismo - DÚVIDA

Mensagempor Danilo » Sáb Jun 02, 2012 04:30

Russman escreveu:Primeiro você deve identificar a reta que passa pelos pontos M e N analiticamente.

Esta reta é y_{2} = ax + b tal que,

\left\{\begin{matrix}
M(r,s)\therefore s=ra+b\\ 
N(2,1)\therefore 1=2a+b
\end{matrix}\right.

Solucionando este sistema identificamos a reta como y_{2}= \left ( \frac{s-1}{r-2} \right )x + \left ( \frac{r-2s}{r-2} \right ).

Como o coeficiente angular da outra reta é 1/5, então para satisfazer a condição de paralelismo, é fato que

1/5 = \left ( \frac{s-1}{r-2} \right )

Ou seja,

r =5s-3.


Muito obrigado !
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.