por CarolMarques » Sáb Mai 26, 2012 11:41
A equação 7x²+24xy-256x-192y+1456=0 é uma hipérbole que por meio de rotação e translação eu cheguei numa equação reduzida x²/9-y²/16=1 o centro é C(8,6) e o angulo de rotação é o arc sen =3/5 (sen a =3/5 e cos a =4/5).Eu não sei achar as assintotas dessa hipérbole.Por favor me ajudem.
-
CarolMarques
- Usuário Dedicado

-
- Mensagens: 29
- Registrado em: Qui Mai 03, 2012 20:26
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por LuizAquino » Seg Mai 28, 2012 15:12
CarolMarques escreveu:A equação 7x²+24xy-256x-192y+1456=0 é uma hipérbole que por meio de rotação e translação eu cheguei numa equação reduzida x²/9-y²/16=1 o centro é C(8,6) e o angulo de rotação é o arc sen =3/5 (sen a =3/5 e cos a =4/5).
Ok. Mas é interessante você mudar as variáveis x e y conforme efetua as translações e rotações.
Por exemplo, ao realizar a translação você passou do sistema de eixos xOy para um outro sistema de eixos x'O'y'.
Em seguida, ao realizar a rotação você passou do sistema de eixos x'O'y' para um outro sistema de eixos uO''v.
Sendo assim, é interessante deixar a equação final com o formato:

Isso ajuda a não fazer confusão sobre que sistema de eixos estamos no momento.
CarolMarques escreveu:Eu não sei achar as assintotas dessa hipérbole.
Se uma hipérbole é dada pela equação

, então as assíntotas dessa hipérbole são

e

.
Portanto, as assíntotas da hipérbole

são dadas por

e

.
Precisamos agora aplicar uma rotação nessas assíntotas e depois uma translação. Desse modo, voltaremos para o sistema de eixos originais.
Para aplicar a rotação, basta realizar as substituições

e

. Isso nos leva do sistema uOv para o sistema x'O'y'. Temos então que:


Agora para aplicar a translação, basta realizar as substituições

e

. Isso nos leva do sistema x'O'y' para o sistema xOy. Temos então que:


Portanto, as equações das assíntotas no sistema xOy são dadas por

e

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [HIPÉRBOLE] Porque yz = 4 é uma hipérbole??
por Sohrab » Qui Abr 25, 2013 03:41
- 1 Respostas
- 2584 Exibições
- Última mensagem por LuizAquino

Qui Abr 25, 2013 19:17
Geometria Analítica
-
- assíntotas
por pseytow » Qua Jul 02, 2008 13:11
- 2 Respostas
- 5349 Exibições
- Última mensagem por admin

Sex Jul 04, 2008 05:39
Cálculo: Limites, Derivadas e Integrais
-
- assíntotas
por aquis » Qua Set 10, 2014 11:49
- 0 Respostas
- 1564 Exibições
- Última mensagem por aquis

Qua Set 10, 2014 11:49
Cálculo: Limites, Derivadas e Integrais
-
- Limites(assíntotas)
por Luciano Dias » Dom Jan 03, 2010 12:37
- 3 Respostas
- 7438 Exibições
- Última mensagem por Molina

Dom Jan 03, 2010 23:22
Cálculo: Limites, Derivadas e Integrais
-
- Limite - assintotas
por emsbp » Seg Jul 16, 2012 17:56
- 9 Respostas
- 4866 Exibições
- Última mensagem por skin

Ter Jul 17, 2012 15:44
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.