por ubelima » Sáb Abr 28, 2012 09:39
Ola, estou com dificuldade em determinar a area de um triangulo. a questão apresentam um triângulo ABC com seus pontos medios M(0,1,3), N(3,-2,2) e P(1,0,2).
Desenhei o triangulo, relacionei os dados com diversa formulas, mas sem sucesso.
Se alguem puder me orientar, agradeço o apoio.
-
ubelima
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Abr 28, 2012 09:30
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por Guill » Sáb Abr 28, 2012 10:05
Primeiramente, sabemos que o triângulo ABC é compostro por três lados, AB, BC e AC. Sabemos também que a área de um triângulo é a metade do produto da base pela altura.
Uma vez que temos os pontos médios dos lados como:
M = (0 ; 1 ; 3) ---> Ponto médio de AB
N = (3 ; -2 ; 2) ---> Ponto médio de AC
P = (1 ; 0 ; 2) ---> Ponto médio de BC
Suponhamos os vetores A, B e C tais que:

Fica claro que:



Resolvendo o sistema por igualdade de vetores, encontraremos todos os valores dos vetores. Depois disso, basta calcular o comprimento de cada um dos lados desse triângulo e usar a relação:
![Área = \sqrt[]{p(p-a)(p-b)(p-c)} Área = \sqrt[]{p(p-a)(p-b)(p-c)}](/latexrender/pictures/cc2eaa97c020b4f32cf2f1844f999792.png)
Onde p é o semiperímetro e a, b e c são os lados do triâgulo.
-

Guill
- Colaborador Voluntário

-
- Mensagens: 107
- Registrado em: Dom Jul 03, 2011 17:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Cálculo de área (produto vetorial)
por wlima » Sáb Abr 28, 2012 00:45
- 2 Respostas
- 12516 Exibições
- Última mensagem por wlima

Sáb Abr 28, 2012 09:02
Geometria Analítica
-
- [calculo vetorial e geometria analitica] produto escalar
por eulercx » Sáb Nov 07, 2015 16:57
- 0 Respostas
- 2427 Exibições
- Última mensagem por eulercx

Sáb Nov 07, 2015 16:57
Geometria Analítica
-
- produto escalar calculo vetorial e geometria analitica.
por eulercx » Sáb Nov 07, 2015 16:55
- 0 Respostas
- 2194 Exibições
- Última mensagem por eulercx

Sáb Nov 07, 2015 16:55
Geometria Analítica
-
- Produto escalar, Produto Vetorial e Produto Misto
por fernando7 » Qua Mai 23, 2018 17:29
- 0 Respostas
- 4808 Exibições
- Última mensagem por fernando7

Qua Mai 23, 2018 17:29
Geometria Analítica
-
- Produto Vetorial
por ARCS » Sex Mai 20, 2011 08:59
- 1 Respostas
- 2263 Exibições
- Última mensagem por LuizAquino

Sex Mai 20, 2011 10:25
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.