• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[geometrica analitica]Duvida sobre retas paralelas

[geometrica analitica]Duvida sobre retas paralelas

Mensagempor Gaby_Civil » Sex Abr 13, 2012 15:29

Olá quando eu tenho duas retas parelas o vetor diretor delas é o mesmo ou eu devo calcular de outra forma ??
Gaby_Civil
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Abr 13, 2012 15:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia civil
Andamento: cursando

Re: [geometrica analitica]Duvida sobre retas paralelas

Mensagempor fraol » Sex Abr 13, 2012 21:27

Os vetores (diretores) de duas retas paralelas são linearmente dependentes (LD).
Se \vec{u}=(x,y) e \vec{v}=(x', y') são os vetores diretores das retas r e s, paralelas,
então (x', y') = k(x, y), com k um número real. Se k=1 os vetores são os mesmos como você disse.

O mesmo vale para os vetores normais às retas, claro se as retas são paralelas, seus vetores normais são LD. Às vezes é mais fácil de trabalhar com os normais do que com os paralelos. Depende do caso.

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: [geometrica analitica]Duvida sobre retas paralelas

Mensagempor Gaby_Civil » Sex Abr 13, 2012 21:53

Valeu pela ajuda !!! mais e seu eu tiver uma reta perpendicuala a um plano, qual a relação entre os vetores???
Gaby_Civil
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Abr 13, 2012 15:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia civil
Andamento: cursando

Re: [geometrica analitica]Duvida sobre retas paralelas

Mensagempor fraol » Sex Abr 13, 2012 22:44

Uma consequência da definição de perpendicularismo entre reta e plano é:

Se uma reta é perpendicular a um plano, então ela forma ângulo reto com qualquer reta do plano.

Em outras palavras, seus vetores são ortogonais, logo o produto escalar dos dois vetores é igual a 0.

Usando os dois vetores do exemplo anterior, mas agora como ortogonais teríamos: x.x' + y.y' = 0 .

.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: [geometrica analitica]Duvida sobre retas paralelas

Mensagempor Gaby_Civil » Sex Abr 13, 2012 23:12

Valeu pelas dicas ... =)
Gaby_Civil
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Abr 13, 2012 15:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia civil
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}