por kalschne » Qui Fev 16, 2012 20:51
Estou quebrando a cabeça em um exercício que meu professor de Cálculo vetorial passou na sala, to precisando de ajuda:
Suponha que uma circunferência tenha raio "a" e o eixo x seja a reta fixa sobre a qual essa circunferência gira. Considere o ponto p na origem quando o centro da circunferência está em (0,a). Determine as equações paramétricas da curva C descrito por este ponto p quando a circunferência gira sobre o eixo.
Eu consigo imaginar o gráfico, mas não estou conseguindo achar as equações paramétricas dessa curva. Alguém me da uma ajuda ai =D
-
kalschne
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Fev 16, 2012 20:38
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: cursando
por MarceloFantini » Qui Fev 16, 2012 22:18
Eu consegui parametrizar para uma volta completa, note que a curva descrita será uma circunferência com centro em

e raio

, daí

onde

e

para

.
Cada volta completa será dessa forma, mas não sei condensar (se é possível) qualquer volta em uma única equação.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por kalschne » Qui Fev 16, 2012 22:48
Valeu, consegui entender =)
-
kalschne
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Fev 16, 2012 20:38
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Equações Paramétricas] Comprimento da Curva
por vmouc » Ter Mar 27, 2012 14:53
- 3 Respostas
- 2223 Exibições
- Última mensagem por LuizAquino

Qui Abr 19, 2012 15:10
Cálculo: Limites, Derivadas e Integrais
-
- [Equações Paramétricas - Derivada da Curva]
por raimundoocjr » Sáb Out 19, 2013 20:38
- 0 Respostas
- 738 Exibições
- Última mensagem por raimundoocjr

Sáb Out 19, 2013 20:38
Cálculo: Limites, Derivadas e Integrais
-
- Equações cartesianas e equações paramétricas
por Victor Mello » Sáb Ago 23, 2014 16:24
- 1 Respostas
- 3308 Exibições
- Última mensagem por Russman

Sáb Ago 23, 2014 18:29
Funções
-
- Equaçoes parametricas
por angels900 » Ter Jan 31, 2012 14:35
- 6 Respostas
- 3473 Exibições
- Última mensagem por LuizAquino

Ter Jan 31, 2012 17:04
Geometria Analítica
-
- [Equações Paramétricas - Espaço]
por raimundoocjr » Ter Set 24, 2013 20:40
- 2 Respostas
- 1750 Exibições
- Última mensagem por raimundoocjr

Qua Set 25, 2013 19:05
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.