• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação de uma parábola

Equação de uma parábola

Mensagempor Gabi 15 » Seg Nov 14, 2011 11:24

tenho 1 exercício na minh apostila que nao sei fazer, que pede a equação da f(x) do 2º grau. consegui fazer os exercícios em que a é igual a 0 mas, creio que nesse exercício que tntei fazer a é diferented e 0.

Dado o gráfico cartesiano de f(x) = ax² + bx + c, determine f(x)

ai tem um gráfico que a parábola tem ponto mínimo (parábola parecida com um U) sendo que no y corta em 6 e no x corta em 1 em 2. alguém poderia me ajudar, por favor?
Gabi 15
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Nov 14, 2011 11:15
Formação Escolar: ENSINO FUNDAMENTAL II
Andamento: cursando

Re: Equação de uma parábola

Mensagempor joaofonseca » Seg Nov 14, 2011 12:20

Uma da formas em que uma função quadratica se pode apresentar é:

y=a(x-r_{1})(x-r_{2})

Em que r_{1} e r_{2} são as raizes.

Assim:

y=a(x-1)(x-2)

Agora desenvolve-se, depois substitui-se y e x pelos valores de um qualquer par ordenado conhecido e resolve-se em ordem a a.No final escreve-se a expressão na sua forma canonica.
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Equação de uma parábola

Mensagempor MarceloFantini » Seg Nov 14, 2011 19:15

Sem o gráfico não há muito que possamos fazer.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Equação de uma parábola

Mensagempor joaofonseca » Seg Nov 14, 2011 22:05

Não é preciso gráfico.
Vejamos:

y=a(x-1)(x-2)
y=a(x^2-3x+2)

Escolhamos o par (0,6) e substituimos:

6=a(0^2-3 \cdot0+2)
6=2a
a=3

Agora na forma canonica:

y=3(x^2-3x+2)
y=3x^2-9x+6
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59