• Anúncio Global
    Respostas
    Exibições
    Última mensagem

GA e Calculo Vetorial

GA e Calculo Vetorial

Mensagempor camposhj » Sex Out 07, 2011 00:41

Por gentileza, alguém poderia me ajudar com o exercício abaixo. Está valendo 30 pontos na faculdade.

Para o quadrado de vértices EFGH (onde: E(0,0), F(7,-5), G(2,-12) e H(-5,-7) ), prove que os lados adjacentes aos vértices estão em 90º e as diagonais são ortogonais entre si.
camposhj
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Set 20, 2011 21:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: GA e Calculo Vetorial

Mensagempor LuizAquino » Sex Out 07, 2011 11:12

O que você já tentou fazer? Onde está exatamente a sua dúvida?
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: GA e Calculo Vetorial

Mensagempor camposhj » Sex Out 07, 2011 12:01

Prof. Luiz Aquino eu joguei os pontos no plano cartesiano e tracei o quadrado. Eu já usei a teoria de produto escalar, onde EF.FG = 0, achando o par odenado (-35,35) = 0. Fiz a mesma coisa com outro lado adjacente, onde FG.GH = 0, achando o par ordenado (35,-35) = 0. Com isso acredito eu, tá provado que os lados adjacentes aos vértices formam 90º.
Gostaria de saber o seguinte, quando eu traço as diagonais, ele formará 4 triangulos dentro deste quadrado.
Eu usei a teoria que a "soma dos angulos internos de um triangulo é 180º". Como os vertices do quadrado são ortogonais, dois desse angulos de um dos triangulos (divididos pela diagonal) possuem angulos de 45º cada um, portanto o outro angulo forma 90º.
Gostaria de saber se tem como provar usando Calculo Vetorial, e não por ângulos como eu disse.
Ou se pode ser assim mesmo?

Att.
Julio
Uberaba-MG
camposhj
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Set 20, 2011 21:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: GA e Calculo Vetorial

Mensagempor LuizAquino » Sex Out 07, 2011 13:06

camposhj escreveu:Gostaria de saber se tem como provar usando Calculo Vetorial, e não por ângulos como eu disse.

Basta calcular o produto escalar entre os vetores que representam as diagonais do quadrado.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.