• Anúncio Global
    Respostas
    Exibições
    Última mensagem

GA e Calculo Vetorial

GA e Calculo Vetorial

Mensagempor camposhj » Sex Out 07, 2011 00:41

Por gentileza, alguém poderia me ajudar com o exercício abaixo. Está valendo 30 pontos na faculdade.

Para o quadrado de vértices EFGH (onde: E(0,0), F(7,-5), G(2,-12) e H(-5,-7) ), prove que os lados adjacentes aos vértices estão em 90º e as diagonais são ortogonais entre si.
camposhj
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Set 20, 2011 21:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: GA e Calculo Vetorial

Mensagempor LuizAquino » Sex Out 07, 2011 11:12

O que você já tentou fazer? Onde está exatamente a sua dúvida?
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: GA e Calculo Vetorial

Mensagempor camposhj » Sex Out 07, 2011 12:01

Prof. Luiz Aquino eu joguei os pontos no plano cartesiano e tracei o quadrado. Eu já usei a teoria de produto escalar, onde EF.FG = 0, achando o par odenado (-35,35) = 0. Fiz a mesma coisa com outro lado adjacente, onde FG.GH = 0, achando o par ordenado (35,-35) = 0. Com isso acredito eu, tá provado que os lados adjacentes aos vértices formam 90º.
Gostaria de saber o seguinte, quando eu traço as diagonais, ele formará 4 triangulos dentro deste quadrado.
Eu usei a teoria que a "soma dos angulos internos de um triangulo é 180º". Como os vertices do quadrado são ortogonais, dois desse angulos de um dos triangulos (divididos pela diagonal) possuem angulos de 45º cada um, portanto o outro angulo forma 90º.
Gostaria de saber se tem como provar usando Calculo Vetorial, e não por ângulos como eu disse.
Ou se pode ser assim mesmo?

Att.
Julio
Uberaba-MG
camposhj
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Set 20, 2011 21:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: GA e Calculo Vetorial

Mensagempor LuizAquino » Sex Out 07, 2011 13:06

camposhj escreveu:Gostaria de saber se tem como provar usando Calculo Vetorial, e não por ângulos como eu disse.

Basta calcular o produto escalar entre os vetores que representam as diagonais do quadrado.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}