• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calcular o volume de uma pirâmide

Calcular o volume de uma pirâmide

Mensagempor -civil- » Qua Jun 15, 2011 21:05

Mostre que os pontos A = (-2, 0, 1), B = (0, 0, -1), C = (1, 1, 1), D = (-2,-1,-2) e E = (1, 2, 2) são vértices de uma pirâmide e calcule seu volume.

A minha ideia era encontrar a base da pirâmide, encontrar a altura (encontrando o plano em que a base está contida, e usando a fórmula de distância entre o plano e o ponto que é vértice da pirâmide) e depois colocar esses valores na fórmula para calcular o volume da pirâmide.

Primeiramente, eu calculei todas as distâncias entre esses pontos. Eu encontrei que d(B,C)=d(B,D)=  \sqrt{6}, d(A,C)=d(A,D)= 3 e d(A,E)=d(B,E)= \sqrt{13}. Depois eu coloquei as coordenadas de todos os pontos e percebi que só daria certo se eu considerasse como base os segmentos BC, BD, AC e AD. Mas a figura formada por esses segmentos não forma um retângulo, mas um polígono meio estranho. Está certo o meu raciocínio? Existe outra forma melhor de encontrar o volume dessa pirâmide?
-civil-
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 22, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Calcular o volume de uma pirâmide

Mensagempor LuizAquino » Qui Jun 16, 2011 00:20

Primeiro, você tem que provar que esses vértices formam uma pirâmide. Para isso, você tem que mostrar que 4 desses pontos estão em um mesmo plano (formando um polígono) e o outro restante não.

Para encontrar esses 4 pontos, escolha 3 e verifique se apenas um dos outros dois não está no mesmo plano que eles.

Por exemplo, digamos que você escolha os pontos A, B e C. Você deve determinar o plano que os contém. Em seguida, verifique se apenas D ou apenas E não está nesse plano. Em caso negativo, você deve escolher outros 3 pontos e continuar o processo. Note que você terá ao todo 10 possibilidades de escolher 3 pontos em um conjunto de 5. Se os 10 testes falharem, então não há pirâmide com esses vértices.

Agora, suponha que esses vértices formam uma pirâmide e você achou quais são os 4 que formam a base. A partir disso você precisa determinar a área da base e a altura da pirâmide para poder calcular o volume. A altura da pirâmide você já tem a ideia de como calcular. Se você não tem ideia de como calcular a área da base, lembre-se que qualquer quadrilátero pode ser dividido em dois triângulos.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Calcular o volume de uma pirâmide

Mensagempor -civil- » Sáb Jun 18, 2011 12:13

Com sua ajuda conseguir resolver. Descobri os pontos que estavam contidos no mesmo plano e calculei a área da base através da área dos dois triângulos que formam a base.

Muito obrigado!
-civil-
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 22, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D