• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Provar que ||u|| > 0

Provar que ||u|| > 0

Mensagempor 0 kelvin » Qui Mar 24, 2011 20:35

Justifiquei usando a definição que esta no livro do P. Boulos e Camargo. Se o vetor não é nulo, o comprimento dele é maior que 0, portanto, a afirmação ||\vec{u}|| > 0 é verdadeira. ||\vec{0}|| > 0 não existe.

É assim que prova?
0 kelvin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 78
Registrado em: Dom Out 31, 2010 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias atmosfericas
Andamento: cursando

Re: Provar que ||u|| > 0

Mensagempor MarceloFantini » Qui Mar 24, 2011 20:51

Bom, normalmente eu faço assim: tomando \vec{u}=(a,b), com a,b \neq 0, temos que ||\vec{u}|| = \sqrt{a^2+b^2}. Como a^2+b^2>0 (pois são diferentes de zero), segue que ||\vec{u}|| > 0.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Provar que ||u|| > 0

Mensagempor 0 kelvin » Qui Mar 24, 2011 21:16

Uhm.. reparei que tem uma diferença entre a segunda a terceira edição do livro. Na segunda tem a definição do vetor e daí vem as operações. Na terceira tem uma lista de definições e até uma parte de analogia pra explicar o conceito, antes de começarem as operações. Como eu vi o exercicio na terceira edição que tinha na biblioteca, não tinha reparado que fizeram essa mudança de uma edição pra outra, daí nem vi as operações antes do exercicio. Esse exercicio nem tem na segunda edição *-)

Os textos tambem foram bastante revisados, na terceira edição tinha um aviso "cuidado com a expressão vetores equipontes", que não tem na segunda.

Tomando a definição do segmento orientado, entendi a prova por Pitágoras.
0 kelvin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 78
Registrado em: Dom Out 31, 2010 16:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias atmosfericas
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59