• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Estudo do sinal

Estudo do sinal

Mensagempor victorleme » Dom Mai 08, 2011 16:33

1)Se k é um número real maior que zero, então :\frac{1}{\sqrt[2]{k^2+1}-k}
Alternativas:
A)Diminui quando k aumenta
B) é menor que 0
C) está entre 0 e k
D) Está entre k e 2k
E) é maior que 2k


Alguma luz?
victorleme
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Abr 23, 2011 19:31
Formação Escolar: ENSINO MÉDIO
Área/Curso: Mecatrônica
Andamento: cursando

Re: Estudo do sinal

Mensagempor Molina » Dom Mai 08, 2011 17:08

Boa tarde, Victor.

Perceba que \sqrt{k^2 + 1} é quase igual a k, porém é maior (por um pequeno valor). Porém, quando k aumenta, o valor do denominador (parte inferior da fração) diminui. Exemplo:

k=2 \Rightarrow \sqrt{4+1}-2= 0,2360...

k=10 \Rightarrow \sqrt{100+1}-10= 0,0498...

Ou seja, a expressão completa aumenta quando k aumenta. (alternativa A está descartada).

O denominador da fração é sempre um valor positivo pelo critério imposto no enunciado, logo a expressão total será sempre positiva. (alternativa B está descartada).

Para verificar as alternativas [u]C[/u], D e E podemos pegar um k particular e ver o que vamos obter como resposta:

k=10 \Rightarrow \frac{1}{\sqrt{100+1}-10}= 20,0498...

Concluimos que a alternativa E está correta.


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}