por DanielFerreira » Ter Set 22, 2009 14:01
Um polinômio P(x) dividido por (x - 2) dá resto 13 e dividido por (x + 2) dá resto 5.
Obter o resto da divisão de P(x) por (x + 2).(x - 2).
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por thadeu » Seg Nov 02, 2009 12:08
Se na divisão do polinômio

por

o resto é 13, podemos dizer que

Se na divisão do polinômio

por

o resto é 5, podemos dizer que

Sendo

o quociente e

o resto da divisão do polinômio

por

, teremos:

Para

, temos:

Para

, temos:

Teremos um sisteminha:

Nesse sistema os valores são

e

, com isso, o resto da divisão será

-
thadeu
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Out 19, 2009 14:05
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por DanielFerreira » Qui Nov 19, 2009 17:59
agradecido.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Polinômios
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Polinômios] Grau do Polinômios e +
por Warioboy » Ter Mai 29, 2012 15:06
- 5 Respostas
- 7656 Exibições
- Última mensagem por Cleyson007

Dom Jun 03, 2012 16:18
Polinômios
-
- Polinômios
por Rose » Seg Set 08, 2008 22:07
- 2 Respostas
- 4537 Exibições
- Última mensagem por Rose

Qua Set 10, 2008 11:50
Polinômios
-
- Polinômios - 3
por DanielFerreira » Ter Set 22, 2009 13:59
- 3 Respostas
- 2952 Exibições
- Última mensagem por DanielFerreira

Qui Fev 10, 2011 09:26
Polinômios
-
- Polinômios - 2
por DanielFerreira » Ter Set 22, 2009 14:00
- 1 Respostas
- 3167 Exibições
- Última mensagem por thadeu

Seg Nov 02, 2009 11:47
Polinômios
-
- Polinômios - 4
por DanielFerreira » Ter Set 22, 2009 14:04
- 4 Respostas
- 3882 Exibições
- Última mensagem por DanielFerreira

Qua Fev 09, 2011 13:39
Polinômios
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.