• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Divisão Polinomial

Divisão Polinomial

Mensagempor Luiza » Seg Out 04, 2010 19:24

Olá , boa noite , gostaria que me ajudassem com esse problema :

- Preciso dividir - > 15x³-6x²-35x+14 por 3x²-7


Obrigada !
Luiza
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Ter Nov 10, 2009 12:28
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Divisão Polinomial

Mensagempor MarceloFantini » Seg Out 04, 2010 22:21

Lembre-se do algoritmo da divisão de Euclides, ele também vale para os polinômios:

P(x) \equiv D(x) \cdot Q(x) + R(x)

Queremos encontrar os polinômios Q(x) e R(x). Note que se R(x) = 0, então P(x) é divisível por D(x) e Q(x). Como resolver: procure montar um sistema como você aprendeu a fazer divisão de números, só que agora serão polinômios.

Qual é a idéia: coloque 3x^2 -7 na chave e 15x^3 -6x^2 -35x +14 fora. Agora vamos ver: um fator a tal que a \cdot (3x^2) = 15x^3. Dividindo por 3x^2, com x \neq 0, encontramos que a = 5x. Só que, ao fazer isso, também multiplicamos -7 por 5x. Isso significa que, do polinômio inicial, subtraímos 15x^3 e -35x : (15x^3 -6x^2 -35x +14) - (15x^3 -35x) = -6x^2 +14. Sobrou o polinômio -6x^2 +14.

Repetindo o processo: um fator b tal que b \cdot (3x^2) = -6x^2, e esse fator é b = -2. Multiplicando por -7 e subtraindo o polinômio resultante: (-6x^2 +14) - (-6x^2 +14) = 0. Como o grau do divisor é maior que o grau do resto, a divisão pára e o resto R(x) é o que sobrou. Veja: R(x) \equiv 0, portanto o polinômio P(x) = 15x^3 -6x^2 -35x +14 é divisível por D(x) = 3x^2 -7 e Q(x) = 5x -2. Escrevendo na forma do algoritmo da divisão:

P(x) \equiv D(x) \cdot Q(x) + R(x) \rightarrow 15x^3 -6x^2 -35x +14 \equiv (3x^2 -7) \cdot (5x -2) + 0

Se não parecer muito claro, refaça no papel seguindo os passos.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Divisão Polinomial

Mensagempor Luiza » Seg Out 04, 2010 22:57

Obrigadaa ! agora entendii como que resolve !
Luiza
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Ter Nov 10, 2009 12:28
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.