• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Divisão Polinomial

Divisão Polinomial

Mensagempor Luiza » Seg Out 04, 2010 19:24

Olá , boa noite , gostaria que me ajudassem com esse problema :

- Preciso dividir - > 15x³-6x²-35x+14 por 3x²-7


Obrigada !
Luiza
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Ter Nov 10, 2009 12:28
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Divisão Polinomial

Mensagempor MarceloFantini » Seg Out 04, 2010 22:21

Lembre-se do algoritmo da divisão de Euclides, ele também vale para os polinômios:

P(x) \equiv D(x) \cdot Q(x) + R(x)

Queremos encontrar os polinômios Q(x) e R(x). Note que se R(x) = 0, então P(x) é divisível por D(x) e Q(x). Como resolver: procure montar um sistema como você aprendeu a fazer divisão de números, só que agora serão polinômios.

Qual é a idéia: coloque 3x^2 -7 na chave e 15x^3 -6x^2 -35x +14 fora. Agora vamos ver: um fator a tal que a \cdot (3x^2) = 15x^3. Dividindo por 3x^2, com x \neq 0, encontramos que a = 5x. Só que, ao fazer isso, também multiplicamos -7 por 5x. Isso significa que, do polinômio inicial, subtraímos 15x^3 e -35x : (15x^3 -6x^2 -35x +14) - (15x^3 -35x) = -6x^2 +14. Sobrou o polinômio -6x^2 +14.

Repetindo o processo: um fator b tal que b \cdot (3x^2) = -6x^2, e esse fator é b = -2. Multiplicando por -7 e subtraindo o polinômio resultante: (-6x^2 +14) - (-6x^2 +14) = 0. Como o grau do divisor é maior que o grau do resto, a divisão pára e o resto R(x) é o que sobrou. Veja: R(x) \equiv 0, portanto o polinômio P(x) = 15x^3 -6x^2 -35x +14 é divisível por D(x) = 3x^2 -7 e Q(x) = 5x -2. Escrevendo na forma do algoritmo da divisão:

P(x) \equiv D(x) \cdot Q(x) + R(x) \rightarrow 15x^3 -6x^2 -35x +14 \equiv (3x^2 -7) \cdot (5x -2) + 0

Se não parecer muito claro, refaça no papel seguindo os passos.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Divisão Polinomial

Mensagempor Luiza » Seg Out 04, 2010 22:57

Obrigadaa ! agora entendii como que resolve !
Luiza
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Ter Nov 10, 2009 12:28
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: