sendo p(r)=p(1/r)=0 implicar p(r+1/r)=0...
tomemos o polinomio do exercicio anterior,de 1° especie,a saber

dividindo por

teremos

faremos

logo (*) sera


cujas raizes serao:
![{y}_{(1,2)}=(2(+,-)\sqrt[]{6})/2 {y}_{(1,2)}=(2(+,-)\sqrt[]{6})/2](/latexrender/pictures/381ff9e3b150f6d778738c4ab63c7767.png)
como

retorne as equaçoes em x,termine como exercicio...
a equaçao (1) tera raizes complexo-conjugado,pois

o calculo dessas raizes complexo-conjugado faremos adiante...

![{y}_{(1,2)}=(2(+,-)\sqrt[]{4-4.(-2)})/2=2(+,-)\sqrt[]{12})/2
{y}_{(1,2)}=(2(+,-)2\sqrt[]{3})/2=1(+,-)\sqrt[]{3}... {y}_{(1,2)}=(2(+,-)\sqrt[]{4-4.(-2)})/2=2(+,-)\sqrt[]{12})/2
{y}_{(1,2)}=(2(+,-)2\sqrt[]{3})/2=1(+,-)\sqrt[]{3}...](/latexrender/pictures/17e1f1e4d8392e4683998d5a77f808fb.png)
![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)