por eu_dick1 » Ter Nov 11, 2014 23:42
Existe uma maneira fácil de encontrar raízes de polinômios com termos ausente? Por exemplo,

, tentei pôr o

em evidência, mas não ajuda muito. O que devo fazer ?
-
eu_dick1
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Sáb Mai 17, 2014 01:05
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Ensino Médio
- Andamento: formado
Voltar para Polinômios
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [polinômio]Relações de Girard + raízes de polinômio
por matano2104 » Qui Set 05, 2013 17:02
- 1 Respostas
- 7030 Exibições
- Última mensagem por young_jedi

Qui Set 05, 2013 17:57
Polinômios
-
- Raízes de polinômio
por ARCS » Ter Jan 25, 2011 21:46
- 1 Respostas
- 2993 Exibições
- Última mensagem por Renato_RJ

Ter Jan 25, 2011 22:33
Álgebra Elementar
-
- Raizes de um polinomio de grau 3
por Lilavet » Qua Abr 28, 2010 09:42
- 2 Respostas
- 5575 Exibições
- Última mensagem por DeMoNaZ

Qua Abr 28, 2010 18:25
Polinômios
-
- Fatoração e raízes de um polinômio
por pablohas » Qua Dez 08, 2010 21:26
- 2 Respostas
- 3639 Exibições
- Última mensagem por Elcioschin

Sex Dez 10, 2010 22:05
Polinômios
-
- Determinar as raízes de um polinômio
por nanasouza123 » Sex Set 22, 2017 21:09
- 1 Respostas
- 4829 Exibições
- Última mensagem por DanielFerreira

Sex Nov 20, 2020 19:07
Polinômios
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Exercicios de polinomios
Autor:
shaft - Qua Jun 30, 2010 17:30
Então, o exercicio pede para encontrar

.
Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !
Assunto:
Exercicios de polinomios
Autor:
Douglasm - Qua Jun 30, 2010 17:53
Bom, se desenvolvermos isso, encontramos:
Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):
Somando a primeira e a segunda equação:
Finalmente:
Até a próxima.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.