por Darphini » Dom Nov 15, 2009 10:01
Olá pessoal preciso de ajuda urgentemente para responder essas questões:
1) Uma das raízes da equação x³ - x² - 2x + 6k = 0 é 3. Determine as outras.
2) Para que o polinômio p(x) = x³ + ax² + bx + c , temos que p(1) = 0 e p(-x) + p(x) = 0, qualquer que seja x real. Determine o valor de p(2).
3) Sendo a função p(x) =
x 1 -3 a) Escreva p(x) na forma de um polinômio
2 x 1 b) Determine as raízes reais de p(x)
2 1 x
Desde já valeu pela ajuda!!!
-
Darphini
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sex Nov 13, 2009 19:17
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: formação geral
- Andamento: cursando
por Cleyson007 » Seg Nov 16, 2009 13:10
Boa tarde Darphini!
Meu tempo está bem curto, mas vou dar algumas dicas:
Quanto ao exercício 01 --> Se o problema diz que 3 é raiz do polinômio, substitua-o na equação polinomial para encontrar o valor de k.
Tendo feito isso, você encontrará um polinômio na forma
![{ax}^{3}+{bx}^{2}+cx+d
Pesquise as possíveis raízes desse polinômio (utilizando [tex]\frac{p}{q} {ax}^{3}+{bx}^{2}+cx+d
Pesquise as possíveis raízes desse polinômio (utilizando [tex]\frac{p}{q}](/latexrender/pictures/e4eb133277d74eae1f85036a76b518ec.png)
).
Utilizando o Dispostivo prático de Ruffini, você encontrará o quociente desse polinômio (será uma equação do 2º grau). Procure as raízes reais.
Quanto ao exercício 03: --> Confira se você digitou a questão corretamente.
É importante que você comente suas dúvidas
Até mais.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
Voltar para Polinômios
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Resolução de equações polinomiais]
por ZANGARO » Qui Fev 27, 2014 21:16
- 1 Respostas
- 1158 Exibições
- Última mensagem por Russman

Sex Fev 28, 2014 14:23
Equações
-
- polinomiais, ajuda-me por favor
por George005 » Qui Ago 14, 2014 23:42
- 0 Respostas
- 1338 Exibições
- Última mensagem por George005

Qui Ago 14, 2014 23:42
Polinômios
-
- "Vetores polinomiais"
por Jhonata » Qua Jul 17, 2013 20:08
- 1 Respostas
- 1082 Exibições
- Última mensagem por young_jedi

Qua Jul 17, 2013 23:33
Álgebra Linear
-
- [Equações] Me ajudem nessas equações do meu trabalho!
por henriquea92 » Sáb Jun 01, 2013 15:53
- 0 Respostas
- 3052 Exibições
- Última mensagem por henriquea92

Sáb Jun 01, 2013 15:53
Equações
-
- [Equações] Determinar Frações de equações
por fenixxx » Ter Fev 28, 2012 21:28
- 2 Respostas
- 3980 Exibições
- Última mensagem por fenixxx

Qua Fev 29, 2012 17:08
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.