• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Polinômios] Prova da fuvest 2ª fase

[Polinômios] Prova da fuvest 2ª fase

Mensagempor vlopagliuca » Qua Dez 12, 2012 15:35

Eu procurei por este exercício nos tópicos mas não achei,se for repetido me desculpem.

O polinômio ,o p(x) = x^4+ax³+bx²+cx-8, em que a, b, c são números reais, tem o número complexo 1 + i como raiz, bem como duas raízes simétricas.

a) Determine a, b, c e as raízes de p(x).
b) Subtraia 1 de cada uma das raízes de p(x) e determine todos os polinômios com coeficientes reais, de menor grau, que possuam esses novos valores como raízes.

Eu comecei procurando fazer uma espécie de simplificação da equação em o que deveria ser um sistema,mas no meio do caminho eu travei.
(1+i)^4 +a(1+i)².(1+i)+b(1+i)²+c(1+i)-8=0
(1+i)².(1+i)²+a(1+i)².(1+i)+b(1+i)²+c(1+i)=8
(2i.2i)+a(2i)(1+i)+b(2i)+c+ci=8
-4+a2i+(-2)a+b2i+c+ci=8
2i(a+b)+(-2)a+c+ci=12

Neste momento eu travei,se puderem me ajudar e e dizer onde errei,ou melhor,como devo começar,seria muito útil.Obrigado!
vlopagliuca
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Dez 12, 2012 14:53
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Polinômios] Prova da fuvest 2ª fase

Mensagempor young_jedi » Qua Dez 12, 2012 21:14

primeiro voce tem que se 1+i é raiz então 1-i tambem é raiz
outra coisa é que possui raizes simetricas ou seja uma raiz n e outra -n

então utilizando as relações de Girard

(1+i)(1-i)(-n).n=-8

-n^2.2=-8

n^2=4

n=2

então as raize simetricas são -2 e 2 e as complexas (1+i) e (1-i) então voce pelas relações de Gerardi pode determinar os demais coeficientes.
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}